AD-R152 835 gRNRGEHENT ASPECTS OF SOFTWARE WAINTENANCECU) NAVAL

sgngSﬁDURTE SCHOOL MONTEREY CRA B J HENDERSON ET AL
. UNCLASSIFIED F/G 9/2

ad SR i 4 et Bt S T e ol
L) A A o " " . .- CEACER R A h
- SR T e vt -Jaia Rtk e b T, N N
L AREA 0 b - i B me s sen - Radc A S S “R S e e St . v .
e .- e A o ' " A
N : - - . . - X

lm | O he jzs

| ce—— .
—— o
——
————

32
=

S

L

22 e pee

MICROCOPY RESOLUTION TEST CHARI
NAT S NAT ety A + TAN AN e -

r'T T - Redh T A A e Bie i T - SR ~ I B e “I Wi 0 Ao b il Jandh Ul S el N A R e R CE A S A A A
v
¥
3
; -
| : ’
! g
, -
\ L
'
m
r,
»

v
-_

—-T- YT

AD-A152 035

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

Thesis

MANAGEMENT ASPECTS
OF
SOFTWARE MAINTENANCE
by
Brian J. Henderson
and

Brenda .J. Sullivan

September 1981

Advisor: Carl R,

Jones

Approved

tor public relecase; distribution unlimited

1
?
e @

PO PG G S S S

LA An g e o S S are Suer g MCRVE MR S EART R NGRS A b e -

SECURITY CLASSIFICATION TF THIS PAGE (When Deta Entered)

DI CTIONS
REPORT DOCUMENTATION PAGE BEF A e R NS FORM
1. REPORT NUMBER 1@7 ACC / :I 3. w:g.“"“.oc NUMBER
4. TITLE (and Subtitle) s, [YPE QF REPORT & PERIOD COVERED
Master's Thesis

Management Aspects of Software Maintenance September 1984

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(; 8. CONTRACT OR GRANTYT NUMBER(a)
Brian J. Henderson and
Brenda J. Sullivan

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT TASK
REA & WORK UNIT NUMBER

Naval Postgraduate School
Monterev, California 93943

11. CONTHOLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School September 1984
Monterey, California 93943 3. NUMBER OF PAGES
115
4. MONITORING AGENCY NAME & ADDRESS(I! dittferent from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
TSa, DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abaetract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide ([necessary and (dentily by bdlack number)}

software maintenance, software management, software cost
estimating, software tools, .

20. ABSTRACT rContinue on reverse aide if necessary and (dentify by dblock number)

The Federal government depends upon software systems to fulfill
its missions. These software systems must be maintained and
improved to continue to meet the growing demands placed on them.
The process of software maintenance and improvement may be called

"software evolution' The software manager must be educated in
the complex nature of software maintenance to be able to properly
evaluate and manage the software maintenance c{fort. In this

thesis, the authors explore software maintenance (Continuced)

DD , %%, 1473 eoimion oF 1 nov 68 1S OBsOLETE
S N 0102 LF- 014- 6601 1

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bntered)

T ———

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Abstract (Continued)

from a management perspective, highlighting topics of critical
importance. These topics include forecasting software maintenance,
estimating the resources required to perform software maintenance,
maniging maintenance personnel and effectively utilizing soft-
ware tools. The svnthesis ot these topics iforms a managerial
paradlgm for understunding the evolutionary nature of software
malntenuance,

5 N Q102-LF-014-4601

2 SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

S A

Pr P N AP Yy

W

o A

k_l.A AW . 2" a A 2 -

.

a2

p

L

T T o ——————s e N i vv_.‘_._.tr;‘-_,..‘,_..a—‘r,--.vva.

Arrroved for pultlic release; distribution anlimited.

" v'rrr‘
-

Management Aspects
o -

Scftware Maintenance i
by

- o

ha e 2o 2

. Erian J. Henderson
Lieutenant, United States Navx
B.A., University of Washington, 1979

and q

B , Erenda J, Sullivan —— -3
" Lieutenant, United States Nav Arerssion Fnr ; “
. B.S., The American University, 1976 {Ph,‘ . /. g
3 T [f 4
- Pooig mor & :
t‘ Submitted in partial fulfillment of the ?fff;f”‘ P q

requirements for the degree of dRIt o e
MASTER OF SCIENCE IN INFORMATION SYSTEMS:@ o
from the S TR T

NAVAI POSTGRADUATE SCHOOL N A N coans By

Septenber 84 - oL r q

UL & .l .

i, il

Authors: Lo, déﬂZ%fé;ﬁﬂ?b/ L - ! :

< Brian J. Henderson IR | j

, 71

-4

szu?ynﬁébiég_ ' ‘\\ ,

TIIIvVan - Lo]

- "" ;‘.
Appreved by:____ =T acpe | /7O — h

’£Z§7f?v%yon§, Co=AdvisSot~]
: ”
s A O)

WiTI1s K. Greer, Jr., Thaicman,
Derartment of Administrative Sciences

B LI

T Mo -
B =
- Rneale T, Warshall, ~ - ®
Dean of Information and Pollcx Sciences a
]
A
.

3
]
¢ o

i e A e LS A A |

ABSTRACT

The Federal goverrment depends upon software systems to
fulfill its missions. These software systems must te main-
tained and improved tc continue to meet the growing demands
rlaced on then. The process of software mainterance and
improvement may ke called "software evolution". The soft-
ware manager must be educated in the complex nature cf soft-
ware maintenance to ke able to properly evaluate and manage
the software maintenance effort. In this thesis, the
authors explore software nmaintenance <from a management
perspective, highlighting tofpics of critical impcrtance.
These torics include forecasting software mainterance, esti-
sating the resources required to perform software mainte-
nance, managing maintenance persornnel and effectively
utilizing software tcols. The synthesis of these tgpics
forms a managerial r[paradigm for understandiny the evolu-
tionary nature of software maintenance.

PR) R . N A .- E
AU T, I P PP 3 e et sea P OO T S S P Sy . W I Sy 5 J

TR Y TRT O OFEYRTLTITR TR

TABLE OF CONTENTS

]
o

I. INTRODUCTION &+ o « o« ¢ o o o o o « o o « o« @« =« =« » 10
A. BACKGROUNL ¢ v o o o o « e « o s o o o o o« o« « 10
B. PROBLEM DISCUSSION o ¢ 4 o ¢ ¢ o o « o « o o« o 12
C. GENERAL PFCCEDURE ¢ ¢ o o o o o o o o « « o « 14
D. ORGANIZATICN &« ¢ ¢ ¢ @ o o « o « o o« « = o « o 14

oL

P

AR
PP A

IT. SCFTWARE MAINTENANCE DEFINED o« ¢ o o o« o « o « » o 16 l?
A. THE NATURE OF SOFTWARE o o o« « « « « o 16
B. SOFTWARE MAINTENANCE ACTIVITIES . « « « « « = 19
C. A DEFINITICN OF SOFTWARE MAINTENANCE 20
D. SOFTWARE MAINTENANCE AND THE SOFTWARE LIFE
CYCLE @« « o ¢ o o @ o o o o o o o o« o o« o « o 22
E. LAWS OF PRECGRAM EVOLUTION AND JAINTENANCE . . 293

IIT. FCRCASTING MAINTENANCE v o o o o ¢ o o « o« « « o« « 32

Iv. CATA REQUIRED FOR MAINTENANCE COST ESTIMATION . . 35
A. SCOFTWARE CHARACTERISTICS o o ¢ o o o« « « o o « 37
1. Develorment HiStOLYy .« « ¢ ¢ ¢ ¢ ¢ o o o « 37

2. Maintenance History . . .« « ¢ ¢« o o « « o 37

3. Type cf Progral . . « « « « o o« « « « » o 38

4, Complexity o« « o« o o o o 2 = o o« s o« « « « 39

B. ENVIRCNMENIAL CHARACTERISTICS . o « « o o« « o 43
1. Personrel . . o« o o o o o o o « o o o « « U3

2. Computer Attributes . « ¢ ¢« ¢ o« ¢ o« o o . U6

3. Software TOOLlS . o v o o « « « « o « o « o 48

4. Programming Technigues and Standards . . . 48

5 Data@ BASE@ .+ « o « o o « o o o o « o « o « 48

C. PRECOMMENDATIONS . o o « o 2 e o o o o« o« o« « o« 48

I PR N S L o L

oy

Y e PP 2P0y W vy
AT AR A T
® .

----- S A A A A L S

v.
(g
VI.
VII.

g e . g gl o

MAINTENANCE CCST ESTIMATION . .« « . .

A.
B.
cC.
De

OVERVIEW 2 o ¢ ¢ ¢ o e o o o o o «
TRADITIONAL METHODS . « ¢« ¢ o « &
FPARAMETRIC MODELS . ¢ o o ¢ o o
ESTIMATING MAINTENANCE COSTS . . .
1. Planning an Estimate

-

2. Evaluating a Software Maintenance Cost

Model o« ¢ « o « « o o o o o «

DEPARTMENT OF DEFENSE AND SOFTWARE COST

ESTIMATING o « o o o « o o = o o
THE DEATH CF SOFTWARE . « . « . &

PERSONNEL CONSIDERATIONS . . « « « . .

A.
B-

C.
D.

E.

INTRODUCTICN o o ¢ o o o o o o o o

SKILLS AND EXPERIENCE NEEDED IN SOFTWARE

MAINTENANCE . ¢ o o o o o « o o @
To Military o « o o o o o o o o
2. Civil ServicCe .« v o o ¢ o o &
3. Contractors . . « « . o « «
PERSONNEL ATTRIBUTES o« ¢ o o « o«

A MAINTENANCE PROGRAMMER PERSONALITY

PROPILE - - - - - - - - - - - L] -
ORGANIZATICN <o o o v o o o o o o o

TCOLS AND STANLARDS . ¢ o o « o o o

A.
E.

INTRODUCTICN <o ¢ o o o o o o o o «
SYSTEY VIER o o ¢ o o o« = o o o
1. Integration o« o o
2. SUPPOIt .« ¢ ¢ . e 4 e e e o
3. Standardization . . . <« ¢ . .
4. Support of Standard Languages
5. Flexiltility and Maintainability
TOOLS & o o o o « o o o = o o o
TYPES OF TCOLS ¢ o o o o o o o« o «

TN Y

50
50
50
53
57
57

57

59
63

€8
68

€8
72
73
74
74

76
77

80
80
80
81
81
81
81
81
81
82

- E. ENVIRONMENIS o o o o 4 o « o o o o « « o & 85
- 1. Programming Manager . « « o « « « o & 8 j
2. Ada Prcgraaming Support Environzent . 87 ?
F. USE OF TOCLS AND STANDARDS . « & .« « o « 90 :
VIII. CLCATA EVOLUTION ¢ o« o « @ o o o o o o s s « o 9y i
A. TATA AS A TOOL o o o « « « o o o o o = o 94 3
B. USE OF DATA BASE MANAGEMENT SYSTEMS . . . 95 ﬂ
1. Class 1 Environment: Files 96 3
2. Class 1I Environment: Applicatiorn Data 4
BASE o o o o« ¢ o o o o s o o o s e e @ 97 i
3. Class III Environment: Subject Data b
BAaSES « « « o o o o o s o o « o« o o @ 98]
4. Class IV Environment: Information)
SYSteOmS o o ¢« o o o o o o o o o« o o @ 99 ‘
S. Class V Environment: Distributed Data 7]
BAS@ < ¢ o o 4 o o o o o o o o ¢ o o @ 100 i
C. INDIVIDUAL DATA NEEDS . o o o o o o o o = 101
IX. CCNCLUSIONS/RECCMMENDATIONS &« o o o o o o o o 102 %
A. THE PROBLEM ¢ o o o o o o a4 « o e o o o = 102 !
B. CONCLUSIONS o o o o o o o o o o o o o o = 103
1. Historical Data Collection 103 B
2. Predicting Software Maintenance: . . . 104 o
3. Personnel . . . ¢ ¢ o ¢ o o o o o o o 04)
Be TOOLS @ o o o o o o o o = o o « o « = 105 3
S. SUMDBIY =« « o o o o o « = « o « « 106)
APPENLIX A: TOOLS 2 ¢ o o o o o o o o o o o o« o o = 107 5
A. TOOL CATAICGS AND REFERENCES . o« o ¢ « « 107 2
B. SOFTWARE MAINTENANCE COST ESTIMATING g
MODELS « o o = o « o = o « o« o« = « « « « = 108 R
Ll
f LIST CF REFERENCES o ¢ o o o a o o o = « o o o o o = 110 B
[BIBLICGEAPHY & « o o = o o o o o« o o o o o o « o o« « 114 :
’C INITIAL DISTRIBUTION IIST o o v o o o o a o o o o o o 115 é
s 7
[
2 4
r' »
q i
j’;: . - L T AMLW

Lot i

1.
IT.
II1I.
Iv.
v.
VI.
VII.

VIII.

IX.

x.

XI.
XII.

bl AR AT A A i A A i MR S "R N i) hnd L2 i vt i i)

LIST OF TABLES

Ccrrective vs. Znhancement Maintenance .
Scftware Cost L[ata Elements . « « « o o«

Module Complexity Rating vs Type of Module

Maintenance-Critical Documentation . . .

Scftware Maintenance Functions . « « « «

Software Maintenance Cost Estimating Procedure

Model Parameters for Requirements Analysis

PhaS€ &« o o o o « @« o o o @« a o« o o o =

Mcdel Parameters in Specification and Desigr

PhAS€@ < ¢ ¢ o o « o « o o o o« = o o o «
Model Parameters in Develorment and

Maintenance Phase . o« « ¢ ¢ o o o o « o
Tcol Function TaXxoNOMY « « « « o o o « o
Software Quality Measurement Tools . . .
Approved and Ncnapproved Data Management

LanguagesS .« « o o o o o o o o o o o o

21
36
42
4u
51
58

60

61

62

84

85

93

hd AEntA Bt ath Siase) hdbutt 2 atn ekl et * Sl g MR N Sl T ek B AR A A A AR b A AV A AR TRt AR A At A R A

LIST OF FIGURES

1
A
2.1 Software Maintenance Activities 20 g
2.2 Software Maintenance life Cycle 25 i
2.3 Software Life Cycle — Puthnam « « o « « + « « « o+ 28 :
2.4 Software Life Cycle - McClure . . . « « o« o » - 29
2.5 Software Life Cycle - Reality . . .« . .« 30
6.1 CommuNicatich StYleS v« « o« « o « o « o« = = « « o« 18 4
7.1 The Ada Programming Sugpport Environaent 88 ,
4
4
]
]
. /
¢ ;
. 1
4
. /
?]
L

TTE TV TR W TR T @ TR TR T e T TR YR W, Wy T AT YT My T Y E T T —-v‘*

rv1j-,-{
. o
@ :

I. INTRODUCTION

A. BACKGROUND

The federal government for the last twenty to thirty

years has Lecone nore and more reliant on computer

"r'—aﬁf""v rv'*ﬁfvvvvr'f'f

Frocessing to accomplish its seeminjly ever increasing and
complex rissions. In 1955, when the trend started, hardware

was the overriding concern, consuming 85% of the total

Y

computing Jcllar [Ref. 1: p. 18]. Since that time, however,
dramatic improvements in technology and producticn lLave
substantially decreased the <cost of computer hardware.
Software, or the other hand, has not benefitted fror techno-
logical advancements to the same Jdegree as hardware and has
continued to rise in frice relative to hardware. The rise
ir the rrice of software and the decrease in the [frice of
hardware has resulted in software rapidly becoming the mcre
costly of the two. It is predicted that by 1985 software
costs will dominate hardware costs by a ratio of nine tc cne
[Ref. 1: p. 18]. The true impact of this trend becores
significant when one realizes that the annual ccst cf soft-
ware (development and maintenance) in the United States in
1980 was about $40 billion, or about 2% of the Gross
National Product [Ref. 1: p. 17]. It is predicteé that by
1985 annual software costs will reach $200 killicn [Ref. 1:

o p- 187].
A =siqgnificant share of these <costs are for software
maintenance. Various studies have shown that from forty -
. to - seventy percent of the manpower effort in most ADP

activities is Jdedicated to software maintenance [Ref. 1, 2,

3]. Despite its monetary significance, there is as yet no

universally agreed ufpon definition of software maibtenarnce.

T T T T T AT AT ATATET ST T T EAT T

AL = i A
Bl ¢+« A

The e€xtensive researchk dcne cn software development ari on
the management of the development process is only now bejin-

X
,‘ ning to have its counterpart in the field of software main-

R N

tenance. The underlying nature and causes of software
mainterance are still imperfectly understood by management
at all levels, military and industry. The reasons for tkLis
li lack of understanding [Ref. 4: p. 2-12] incluie:

1. EBxecutive decision makers' lack of computer related

experience: For a manager overseeiryg software rain-
: tenance this lack of experience is often demorstrated
[e through impatience with system limitations and intcl- !
‘ erance for the costs o0 systex enhancements.
2. Hardware orientation of software management mecha-

nisms: Most directives and technigues for contrcl-
k' ling the develcpment and maintenance of software hLave b
teen adopted from hardware engineering disciplines.
Thus, guality assurance, reliability and rairtain-
3 akility, and configuration wmanagement G[proceduares
rc reflect an orientation toward tangible rroducts. ’
a Tkeir translation for wuse with the environment of
intangible scftware components has not been a
ccmpletely successful one. _
(3. Development vice life cycle focus: This has signifi- ’
cant impact on the tasks of managing and maintaining
software after develorment. Computer programs that

LNl SRR sai

are developed in the most expeditious, cost-effective

¢ way to meet performance standards are not necessarily

conducive to maintainalbility. Often the develcrrent

Froject manager must sacrifice software design

il SL Sash etk a0t
e .

features that are conducive to program maintain-
¢ atility in order to meet cost, schedule or perfora- ’
ance rejuirements. Thus the user 1s left with

software that is costly to maintain.

11

4. 1Increased software systea complexity: Complexity is
not inherently bad for maintenance if intrccéuced in
nmoderation anpd if documentation 1is adequate. In
today's data processing environment there is less
need than ever before for complex designs and elegant
ccde. Considering the increasing costs of software
development ard maintenance it makes nore sense to
rroduce straightforward program logic¢ ard code.

S. M"low-bid"™ contracting for acguisition of a software
system: This situation affects maintenance 1indéi-
rectly as a result of the efforts of any cost cutting
on the part «¢i the developer. Given the degree to
which DoD contracts its software development, this
Froblem has significant impact on the military.

6. Risk, cost and reliability estimating deficiencies:
Accurate estimation techniques would greatly enhance
the maintenance managers effectiveness in allocating
resources for frogram maintenance

7. Alsence of Common Software Maintenance Practices:
Management at all levels are placed in the awkward
position of having to learn to interpret management

control data from each new systém.

B. PRCBILEN DISCUSSICKN

This thesis will study software maintenance frcm a
management perspective. Primary emphasis will be placed on
examining pertinent aspects of the management of the func-
tion cof software maintenance. The thesis will focus on the
mainterance activity 1itself, rather than on the interface
tetween the activity and the users of software. The manage-
ment of that interface is termed "Configuration Yanagement",
and is well-governed with numerous policies and standards.

The ma-ority of existing software configuration management

12

PEPEEW IO

P

doctrine focuses on software development, while providing
little assistance to the software maintenance manager. The
authors do not intend to present a “how-to" manual for soft-
ware rainterance; rather, a framework will ke cffered ugon
which tle manager may develop his or her understanding.

A central premise of this thesis is that software
evolves, The «concept of software evolution has rLeen
explored in the 1literature kefore [Ref. 5: p-217] and
provides the basis for a paradigam with which a software
manager ray understand the nature and causes of software
maintenance.

Software evoluticr is influenced by a number of internal
and external factors. External factors define the envircn-
ment to which a given software system nmust adapt, and
internal factors define the ability of the system tc¢ make
the adaptation. The goal of the software manager is to
direct the evolution of the software toward a system that
continues to nmeet organizational goals, or at least away
from a system that is inefficiernt and expensive.

The software manager must seek to understand the factors
that influence software evolution in order to achieve the
goal c¢f directing that evolution. By understanding these
factors, he or she may then learn to predict their irfluerce
cn software evolution. Once the influence of the internal
and external factors may be predicted, the software manager
may then seek to control those factors and direct the evolu-
tion of the software systen.

A failure of the manager to even understand how and why
sof tware evolves will allovw the software system to evolve in
an uncontrolled fashicn towards a morass of inflexible and
unreliable "spaghetti" code. Controlling the evoluticn of
software allows the software manager to maintain a func-

tioning, effective software system well into the future.

13

e ‘
RS P

.

Software, like ary evolving entity, 14y reach an =volu-
tiorary dead-end. This occurs when the 1irternal factors
{(code structure and design) pmake it impossible to respord to
the evolutionary demands of external factors. Software in
this stage may be said to have achievel "software serility".

Thke intent of this thesis 1s to help the software
manager understand what factors influence software evolu-
tion, how to predict software evolution, and finally, scme
ideas on how to «ccntrol the influence of interral and

€xternal factors.

C. GENEFAL PROCEDURE

The procedure used was to research literature concerning
sof tware maintenance. Particular eaphasis was g[placeé on
software maintenance management, cost estimation, arnd meth-
odologies to conduct software maintenance. The fpersoral
experience of LT Sullivan was invaluable in placing much of

the research in persgective.

D. ORGARIZATION

Chapter 1II develops a definition of software mainte-
nance, and discusses the major activities conducted during
paintenance. The similarities of software maintenance to
software development and the characteristics of the mainte-
nance rhase of the software life cycle are also discussed.
Considerations in predicting required software maintenance
are exgplcred in Chapter III, and the data required to accu-
rately predict software maintenance 1is discussed in Chapter
Iv. In Chapter V, methods of estimating software mainte-
nance ccsts are presented, and problems associated with
current estimating techniques are discussegd. Chapter VI
explains in more detail personnel consideration in software

maintenance, and Chapter VII explores the impact of software

14

~ANR

——

v

tools and standards. The relationship of software mairnte-
nance and data is the subject of Chapter VIII. Chapter IX
sumaarizes the authcrs' views on software pairterance,
explains a paradigm with which a software manager may better

understand software zaintenance.

15

P R ——— R T———— ————— Trw YT T T

N
3K TURICPURITNN

'L

n‘.ﬁ oL

el

,v~ff7v.v
ﬂ‘ L
.

II. SOFINARE MAINTENANCE DEFINED

A. THBE NATURE OF SOFTWARE

!
E
b Software may be defined as "a realization of a set of
] plans or specificaticns, encoded 1in computer language."
i [Ref. 6: p. 7]. Software is not a physical entity, it is ar
! abstraction, a 1logical representation that is physically
‘@! manifested in the form of program listings and documenta-
i tion. Software, unlike hardware, does rot wear out.
Hardware is subject tc deterioration in the course cf ncrral
{ operaticn and reguires maintenance in order to restore it to
its fcrmer operating condition. Software, on the ctlLer
hand, dces not change unless and until people <change it.
Software does not wear out of 1its own accord. Software
{ mainterance does not mean restoring software to its fcrmer
E‘E state, rather it involves changes away from the fprevicus
implementation. In the case of hardware, the former cper-
s ating condition was the ideal and deterioration has caused
t- degraded performance. Restoration of hardware to the fcrmer
operating condition will restore optimum performance. With
software, however, defects or deficiencies in the former
state will have caused degraded performance, and software
must ke changed to a state different from the original in
crder to restore optisum performance. Software maintenarce
[becomes a process in which the software is <continually
E%' changed in order that its performance may be improved or
E maintained. Unfortunately, software maintenance is cften so
L. poorly done that the software's performance is neither wmain-
f tained or improved. The nature of software maintenance is

well-supmarized below:

7 e P B B S arabdnUiinte SRS dhuat die ES A=t MREEAL AL AN A S S S A T e e e

Unfcrtunately, tre nature of hardware and software
errors differ in at least one fundamental character-
istic - hardware deteriorates because of a lack of main-
tenance, whereas software deteriorates because oI the
presence of maintenance [Ref. 7: p. 111.

A landmark study cf software maintenance is thkat done by
Bennet P. lientz and E. Burton Swanson [Ref. 2]. In it the)
authors specified three basic categories of software mainte-

nance:
1. Corrective maintenance: Emergency program fixes and ;
routine debugging.
2. Adaptive: The accomnodation of charges to data \
inputs and fields, and tc¢ hardware and software.]
3. Perfective nmaintenance: Enhancements for users, ‘

improvements cf program documentation, and recoccing
for efficiency in computation. [Ref. 2: p. 68].

A 1982 study by Rome Air Development Center (RADC) grouped '
software maintenance into four basic categories [Ref. 6].
While very similar to the <categories of [Ref. 2], the RADC

study included a category of "modifying"™ mainterance.

4. Modifyirg: Requirements or specifications are \

* changed. These changes may result from iradequate

ipitial analysis and specifications; they may spring

from new insights or better ideas about the require-

ments and specifications, or they may be caused by \
evolving applications and envircnments.

A General Accounting Office (GAO) study ({Ref. 8: pp.
28-29] offered six categories of software maintenance:

1. Modify or enhance the software to make it do things
for the end user that were not requested in the crig-

inal system design.

2. Modify or enhance software to make it do things for
the end wusers that were <called for in the original
design but which were not present in the first
production version of the software.

17

e m e T e T N PP LU P POy CAP. DL N WL A E N |

:\ 3. kemcve defects in which the software Jdoes something
- other than what the user wanted.
4. Remcve defects in which the software 1is prograrmed
incorrectly.
5. Ogtimize the scftware to reduce the machine cost of

tunning it, leaving the user results urcl angyed.

: 6. Make miscellaneous modifications, such as those
! needed to interface with new releases of orerating
3 systens.

} The various <categories of software maintenance may be
L!! abstracted into two troad categories:

e Corrective: Ccrrective maintenance may be chlaracter-

ized as modifications that leave the functional sgec-
[. ifications of the system unchanged. Such maintenance
§ is necessary and mandatory, in the sense that the
systenm cannot operate or existing specificaticas
carnot be nmet. This would include corrective and

adaptive maintenance categories of Lientz and Swanson
and RADC, and categories 3 through 6 from the GAO
study.

e Enhancement: Enhancement maintenance changes the
original functional specifications of the system tut
leaves the primary functions intact. That is to
say, an enhancement may add a report that was not
called for ir the original specifications Lut which
is now required by a user due to changed government
reporting regulations, but an enhancement dces not
change a payrcll system to comprehensive management
system integrating payroll, accounting and inventory
functions. Two maintepance activities not speciti-
cally included ir previous categories are mainterance
due to a growth in the system or as a response to

ctanging reguirements. Growth of a system includes

18

T N R P I L. RO DR e

T T —————mweeee—

exrarsion of the number of users serviced or files
Jenerated and accessed. Changingy regjuiremernts arce
represented ky the changed Jovernment regulaticrs
example, such as the proposed unine-digit Zip Ccde
chanje. Enhancenent maintenarce 1is considered
largely discretionary. This would inclucde Ferfective
maintenance category of Lientz and Swansor, fperiec-
tive and modifying categories of RADC, and categories
1 and 2 from tlke GAO study.

B. SOFTWARE MAINTENANCE ACTIVITIES

A popular misconception about software maintenance, chne
reinforced Ly the use of the term "maintenance", is that the
primary activity is the correction of "bugs". Tre three
studies discussed earlier revealed that correcting tugs is a
small prart of the actual mainternarce effort. Figure 2.1
shows the distributicn of software maintenance activities in
the organizations studied in ([Ref. 2], while Table I
compares corrective and enhancement maintenance percentages
for each of the three studies cited.)

Successful software maintenance derends upon gaining a
level cf wunderstanding of the software systen. Scftware
cannot be maintained unless those responsible for mainte-
nance understand the software. Maintenance personnel spend
at least half of tlteir time trying to understand - ‘the
system ccde, the system documentation, and the reguests fron
the users. Figqure 2.1 shows data on the activities cf main-
tenance fpersonnel in performing an enhancement. Mainterance
persconnel spend about 47% of their time studyiny when zaking
an enhancement, and about 62% when mnaking a correction
[Ref. 9: p. 2]. In a study of application program mainte-
nance it was observed that:

19

B . S Y Y

N NP 1

NRINDUPERIN, U

.

P T L y——r, . rad LM A . i St N S

[Ref. 9: p.2]

Figure 2.1 Software Mai

Unde rctandlng the irtent and
the orlglnal
difficu

ntenance Activities.

style of iapleaentation ot

ragmer was the ~major cause of tige and
ty in ma ing the change [ReE. 10: p. 8)].

C. A DEFIBITION OF SCPTWARE MAINTENANCE

The authors' research has yieldeld numerous Jdefiniticns

cf software aai1ntenurce that encompass some oir all 0f tiu

above named categorics. The

manner 1L which they treat the

20

definirtious d2ilerC 10 the

alstracted catvjeries of

1
J'L. PP Y

e @,

K WP

. .
N ek A &

r-

ppp— " !',—vva
LR L 1‘- ‘.“_.

B ZEA Zun me gue s ane 4

PN Ay

P ——

TABLE I
Corrective vs. Enhancement Maintenance

Corrective Enhancement
lient2 & Swanson 17 64
GAC 19 51
RALC 31 61
note: Corrective maintenance figures do not inclule

adaptive maintenarnce

{Ref. 9: p. 1, 6: . 27]

"corrective maintenance" and "enhkancement maintenance". A
definiticn of software maintenance that 1includes both
corrective and enhancement categories is termed an "inclu-
sive" defirition. A definition that includes corrective frut
not enhancement is an "exclusive" definition. Enhancement
raintenance in this context 1is termed "continued develop-
pent", or perhaps "prcduction programming".

Software maintenance, for the purposes of this taesis,
will ke defined as:

..ssall those activities associated with a software
system after the system has been initiail defined,
déveloped, deployed and accepted [Ref. 6: p. 91].

This may te summarized as the "function of keeping software
in an operational mode" [Ref. 11: p. 139]. This inclusive
definition is used because:

o

X TN - 2

..

L e AR RBBE. JODw

W5 SRr

aal

e

PrpE——

1. Ecth corrective and enhancemert mnaintenance are
r€rformed by the same organization, and often by the
same person. Approximately two-thirds of the systenms
studied in [Ref. 2] were nwaintained by one cr two
F€OF le. Both forms of software @nainterance are
rerforaed concurrently in the same environmert using
tke same tools,

2. The bulk of the effort 1in software maintenance is irn
understanding the software.

3. The term "mairtenance'" has been accepted as referrcing
tc both correction and enhancemernt, despite the poor
ccnnotation of the word.

4. Trke 1inclusive definition reflects the concept oif
scftware evolution. With the 4inclusive definition
software may gradually evolve from the original
product, rather than being continually redefinedé and
redeveloped.

5. It is difficult to say where the segarition ketween
ccrrective maintenance and continued dJevelcpment
wculd occur. Given that both activities are usually
performed by the same person, such a distinction

becomes meaningless.

D. SCFTWARE MAINTENANCE AND THE SOFTWARE LIFE CYCLE

The software life cycle is the multiphase prccess begin-
ning with problema definitiorn aril continuing to software
system oksolescence. The software 1life cycle is separated
into two primary phases, the development phase and the main-
tenance phase. While there is some debate over the validity
of this separation given the evolving, continually devel-
oping nature of software systems, it will be adhkered to in
this thesis because it supports tne accepted inclusive defi-
nition <c¢f software &maintenance. The sub-phases o¢f the

develcprent phase are:

22

.t N. N e b el

- .. N

UGN,

L

1. PRequirements analysis: The objective of this stage

is to lefine the reguirements of a software systemn.
Resources such as manpower and hardware and software
support needed to create and support the soitware are
ccnsidered.

2. Specification: The stage in which each furncticr to
te performed ty the software is precisely iefined.

3. Design: The stage in which alyorithms are develofped
to describe hew each specific software systez func-
tion is to be feriormed.

4. Ccding: The stajye in which tae design algoritims are
translated intc computer code. The +translaticn of
the design intc¢ code must be such that the resualtant
scftware neitler adds nor subtracts form the design
definition.

5. 7Testing: The objective of this stage is to demcn-
strate that the software conforas to specificaticns
and performs ccrrectly for all input data. The gecal
of testing is to eliminate unexpected program ccndi-
tions and failures and to discover any incorrect
igplementation of the specification [Ref. 11: p. 32].

A software system that is designed with future maintenance
ir mind will more readily evclive. The three principles of
maintainable software that should be embodied in the crig-
inal design are:

e Understandability: The ease with which software code

and documentation aay be read and urnderstool.

e Testability: The ease with which the corr<ctness of

changes may be demonstrated.

e Modifiability: The ease with which software code may

te modified. [Ref. 11: pp. 36-37)].
The paintenance fhase is very siailar to the Jevelcpaent
Fhase with the exception of the initial stage of

23

" AAA.

a4

e,

T Y ¥ YV vy vV
'

~

urderstanding the scftwace. Tijure ..2 shows tae mzainte-
nance life cycle. All aspects or th=2 aodification agfproacth
must be considered ir the Ccontext of tihe existing installed
soZtware, rnot Jjust 1z t-=.5 0f the struactural, human engi-
reering, reliability, inl efficienc, ZZactors that are tae
rmajor considerations whea Ieveloping software. The nairnte-

naice otjective is to linit tne effect of a modification on
cther rarts of the 1irnstilled software and on user inter-
faces, to avoid excessive corfusion and retraining as well
as tc avcid compromisiny system intejrity and 3quality. Once
an understanding of the soitware is jained, the malntenarnce
phase, rparticularly ir tne case of ernhaacement naintenance,
Froceeds as a microccsa of the deveiopaent phase.

The stages of the software maiatenance phase 13y be
deZined as follows:

1. Understand the Software: Durirng this stage the soft-
ware system prcgraa listings and available documenta-
tion are studied in order to gain arn urnderstanding of
the system's logic and processes. The user's
ccmpiaint of error or regquest for modificatior is
also studied ip order to determine what action needs
tc be taken.

2. Define Objective and Aprroachk: This staje includes:
a) Regquirements Analysis: The system capabilities and

the resources needed to provide the modification
are defined in the context of existing systen
capabilities and constraints.

b) Specification: Zach new function to te rerfcrred
by the software mnodification and the iampact on
existing functions is precisely defined.

c) Design: Changes to the design algorithams and
rrocedures are defined, or, in the cese ¢f pcor
documentaticn, new algorithms are develoged to

describe hew each new or nodified function 1is to

be performed.

-

P

_— Y

Figure 2.2

CNDERSTAND REQUIREMENTS
WUF T NARE ANALYSIS
1
i
. _—
! :
ot SPECIFICATION
DEFINE f
CBJECT v E T -
r . —_—t
APPROACH
S

F"‘___'i - —

i CoDE
, MPLEMENT [_______ .
T OMCDIFICATICON |
i | NSPECTION
eeeee———

1

|

I

.

i

i uNIT

TEST

CHECK -POINT
REVIEW

NTERGRATION

TEST
7
i . -~
) - ‘
7 -
- i
*—j—‘; o | —]
: 1
: EVALIDATE SYSTEM
! JOFTWARE L\ — et
| N |
\\
\
N
~.

ACCEPTANCE ‘
TesT |
N T

J CHECK POINT l
HEVEW ;
|

—

Scftware Maintenance Life Cycle,

25

O, R

t

.9

-A.Aj_l. P

W W W W T Y Y v Y Y O wwy vyewy/ o
< 3 B

d) Check-rpoint review: This step affords a chance to
validate and wverify the roposed mnmeodification.
The software manager must evaluate wnetheor the
rroposed wmcdification accurately and coampletely
addresses the problem, and whether the <cost and
impact of the nodification justifies inplementa-
tion.

Irplement the #Modificatioan: This 1s the «ccding
stage, where the modification design is ccrrectly
translated intc well-structured code.
Revalidating the Software: During this stayge it aust
te demonstrated that the modifications ace correctly
irplemented, that the software system as a vwhcle
still functions correctly, and that softuare juality
has not been harmed by the modirfication. The actual
testing of the software modification anil its impact
on the system £follows from the testing steps of the
design process:

a) Unit testing: Each module cLanged is unit tested
to determine if it functions properly.

b) Integration Test: FRegression testing is performed
as each module is re—inteérated into the system to
determine if any other parts of the system have
teen adversely affected by the modification.

c) System and acceptance Test: The changed system is
tested to ensure that it meets both the original

design and the modification specifications.

The goal of minimizing the impact of a modification on a

software system 1is tcth complex and difficult to achicve.

This

is primarily due to the *ripple effect'; the side

effect of mrodifying =software such that changes to one part

0f a
[Ref.

scftware system affect other areas of the systen

11: p. 1541. The ripple effect is due to the various

interrelationshifps between modules in a program and hetween

RAR AR |

AL

T

DO JrTTw . W

) l;

e, .. - -

programs in a software system. Modules and programs may be
related in the terms ¢Zf functions or wvariables they share.
Ary change to a module has the potertial to propaygyate its
effect throughout the code. Changes to correct errors show
at least a 20 - 50% chance of Jenerating further errors
[Ref. 12: p.122].

Thte effort and the difficulty of inplementin,; tre clange
is nct <simply a matter of rewriting the necessary ' code to
jomplement the change, bat must also include an examination
¢t cther rarts of the system to determine if aiditioral
adjustments to compensate for the change must Le made.
Oscally this involves a manual search of the coade to iden-
tify any other affected modules, a process that often
regquires more time and effort than rewriting the code.

The software 1life cycle 1is represented gragpaically in
terms cof resource (ustally manfpower) use over time. There
are several views as %o how such a representation should
locok. Cne view, that of Putnam and others [Ref. 13], holds
that the life cycle closel resembles a Rayleigh curve with
the inflection point representing the delivery of the soft-
ware system to the wuser and the start of the mainterarnce

phase (Figure 2.3). The bulk of the effort occurs in tkhe
mainterance phase, The effort required to mairtain a
system stcadily decrecases over time [Ref. 13: p. 12].

Entancements that exceed the level of effort should be
treated as new develogpment.

An alternative view holds that the effort varies over
time as each new erhancement reguest initiates a mini-
develorment cycle (Figure 2.4). All enhancemernts, regard-
less of scope, are treated as continuation of the original
system instead of new develofpments. This view sugpports the
software evolution [ferspective taken in this thesis, and
seems to Letter represent the industry and government pclicy
cf 1issuing successive ‘'Yreleases" (major changes or revi-

sions) of a software systenm.

27

. ehaaras

hennd e

-l

R

X v T T W VT WY LY AT e TEe T e T s 1

P . —_— — - ———————
L‘ i
' MANPUWLH rrurie im —1
| it]
’ SYSTEMS FUNUTIUNAL i
OEFINiTION LESWN SPLOFICAT.UN CtetiurMend LPEHATLON Al MaN it Nance
bl I - -l | -
1T MER VN TRACIUR, JudloMed)
I 7

LUliiRAL L ‘ ,

t‘ 1Es1 an
vALIDATION

1|

PR J

FUNCTIUNAL UESILN “ N:\.fau al.on R
SYSTEMS SPECIFICATION (SUMENRA]]
¢ JERINTTION l’., vaRiABLe -
Ceoite , \\ 3
AND / | -~
} 0N,) S
k Y TiMt

. 0 UtvecLPMEN] 1, MOUIFICATION ANy ENRANCEMENS ']

i VORAK ~ ou* Cr LibE CYCLE tFrQas

Ji

WURR - dotaur [uta
chhinl

P [Ref. 13: p. 15]

Figure 2.3 Software Life Cycle - Putnaa.

g
~¢ Ideally, ygiven a stable mainterance environment wcrking

.

on a well-documented, well-designed systex using mainterance

techniques incorporating state-oi-the-art techrnology, thLe

curve in Figure 2.4 will jradually decrease. fach 'Lump!

DEL NI

will te lower than its predecesser as the system is gradu-
ally refined and the ripple effects are tightly ccntrclled.
Unfortuanately, the reality is wmore accurately representedl in

Figure 2.5, where tle resources regyuired to sugpgort the

9 _

{ . .
— system 1increase steadily over tiae. Entkancenmernts are
. requested that exceed the capacity of the system tc evclve.

Poor Jesigym practices, ypoor Jocumentation and poor awainte-

A Adhd

nance practices fuel the riprle effect and errors propayate
{ through the systen. Any oscillation erffect due to erhance- 1

! ment is cawmpened out in the continual Lattle against tugs.

28

----- L o a m sace man anese ane saue Sesnaes e Shai SiegeSiete Sl Sate dhai o Radt Jiatd AC e I gt St Bt

R e [P— —

Begin Production Life

Support Effort

MAINTENANCE PHASE

Time

[Ref. 11: p. 122]

Figure 2.4 Software Life Cycle - HcClure.

E. LAWS OF PROGRAN EVOLUTION AND MAINTENANCE

Studies by Belady, Lehnzap arnd others have shcwn that
there exists a deterrministic, measurable rejularit; in the
life .ycle of a software systen. This regularity has Leewn
expressed in the five laws of large program evolutaorn
dynamics. These laws hLave been supplemented Ly ZBarry
Boeum's three laws cf software maintenance. These liaws
accurately represent observed phenoamena in software evolu-
tion, and are useful to the software warnagyer in urder-
standing how and why software evolves.

1. law of Contirnuing Change: A system that is ucsed
underyoes continuing change until it is judged wmore
cost effective to replace the sSystenm with a
re-developed version.

2. Law of Increasiny Entropy: The entropy of a systen

(its unstructurelness) 1increases with tiade unless

29

A T T TR S S P S S iy DA | ameaiata PP

PP T S G

denadimd i B et

P WO

Al

s TaASER L.

. a .

LA AR A . AR AR o

~y—v—Y 7T

T ——r—

.

e LD s A0 et e "R Sl Mt —ww T ~ AhaRaragiicadiliagd ot Mt Siv S g it _-.—vviﬁtfrv—r‘vv*-—hw—vvr’—v—.rvfj

!
{
|
I

. SRS R SN WY

[Ref. 14: p. 159)]

]

)

Y 2 [3XN TIME

i
Rec l n.m-n..u.o«»l Maintengnce and Enhancement

Figure 2.5 Software Life Cycle - Reality.

sfecific effort is made to wmaintain or reduce it
[Ref. 4: p. 2-3]. b
Fundamental Law of Program Evolution: Program evolu-
tien is subjeci to dynamics which make the proqram-
ming process self-regulating, with statistically
jeterminable trends and invariances, while ajrearing
tc te stochastic locally in time and space. \
law of Invariant Vork Fate: The overall level of
effort in a large programming project is statisti-
cally invariant, or tends to remain fairly constant
over time.

Law cf Conservation of Familiarity: For reliatle,
rlarnel evolution, a large-progranm under Joing change
pmust te released at regular intervals determined by a
safe mnaximum release contert. If the interval {

spacinj or maximum content limitations are exceedel,

30

Ll 1."'

v

T Ly

PP

integration, guality and usage problems will cccur
with the resultant time and cost over-rurns [FRef. 15:
p.142].
Scme additional laws of software maintenance were
rresented ty Barry Boehm in [Ref. 16].

1. law of Crganizational Reflection (Conway's Law):
Scftware products and the organizations they serve
grow to reflect each other.

2. Law of Glacial Technology Transfer: Software frod-
ucts are rarely modified to accommodate a different
technology.

3. Law of Mainterance leverage: Organizational analysis
and software design have more maintenance leverage

than any development or maintenance actions.

N

> - BaEnS Ak fn= e ded S S s Soe ftn S0 e 08 G e I B S v e B B Mo mae s e S e e 2o S

4 III. FORCASTING MAINTENANCE
While software nmaintenance follows a cyclic pattern of
{ progyressive enhancenerts, it is generally performed as a
‘i level of effort activity [Ref. 1: pp. 545]. The cycles of
enhancements and the difficulty of each enhancemert are
o largely unpredictable very far into the future. The cerntral
problem cf forecasting software costs is predicting wkat the
qg level of effort will be over the operational life of the
software systen.
s Two primary factors influence the 1level of effort esti-
nate. The first 1is the amcunt of software @mainternance
® needed. Future software maintenance needs are driven by
error repair and «changes rising from external factors.
Cperational systems fulfilling current and projected mission
needs will raturally require maintenance for scme time irnto
the future, and may require considerable staff to sufppcrt
new releases and revisions. The second factor is the
perceived kenefit of the software to the organization, which

depends upon the worth of the software relative to other
Iesource requirements. The two forces combine to yield a
level of effort sufficient to correct software errors and
make most changes due to external factors within a reascn-
able tinme. It is nct completely clear, however, how the
amount of maintenance needed and 1its perceived benefit
interact to determine a level of effort [Ref. 17: pp. 4].
The estimating froblem is complicated by the unpredic-
table nature of mairntenance ripple effects. Hopefully,
analysis of available documentation and <careful regression
testing will help tc eliminate errors, but the software
manager must recognize this complication to his estimation
Frobleum. While none of the [fpublished techniques cr models

32

.

JPTp——

4

POt I S S R i b i

available to the authors specifically addressed the ripgle

ffect 1in the estimating process, a realization ¢f the
Fhenceenon is often imbedded in the representation of main-
tenance fpersonnel skill 1levels. Intuitively, the mcre
experienced analysts and programmers are nmore likely +*o
detect potential ripple effects.

Cnce the level of effort has been determined, software
maintenance labor ccsts are relatively easy to estimate
using the appropriate labor rates. Software maintenance is
a labor-intensive activity, and labor costs are dominant.
Costs asscciated with computer hardware and support scftware
may ke included, but such «costs are normally attrituted to
activity overhead as those elements benefit other activities
in addition to the maintenance of a particular software
systen. A software manager should be aware of the lenefits
cf acquiring sophisticated support software to replace maina-
tenarnce personnel [Ref. 18: p. 247].

The Zfuture need for software maintenance and its
rerceived terefit are difficult to guantify. Thus the soft-
ware manager requires methods somewhat more gquantifiable and
sustainatle to generate reasonable estimates of- software
raintenarce costs. The following chapters will discuss suck
methecds and how a software manager should approach the task
of estizating the software maintenance level of effort.

Tke foundation of any approach to forecasting software
mairnterance is the estimator's own experience and judcement,
the tlend of which will hereafter be referred to as "ezxreri-
enced -udgement". The software manager must apply his or
her own expericnced judgement to the forecasting/estimating
metkcdology. Experienced judgement is either arpglied
directly, as in direct estimating or estimating by analogy,
cr it is used to directly estimate the parameters upcn which
a parametric model is based. Published cost estimating

models reduce the amcunt of Jjudgement needed by fproviding

33

N T - Y Y

i

« AWM. s ala a2 MMRE. Ll

taktle of values for all parameters used, and the roie cf the

estimator is reduced to one of picking numbers and plugging

them intc formulas. Cne must remember that tlkcse rodels

were derived from the model designer's experience, nwnmodified

Ly statistical analysis of sample populations, and will not

apply to all environments.

stand and appreciate the

The software manager must under-

characteristics and limitaticns of

any apprcach used tc forecast future software mairtenance

needs. Any approach the

estimator cares to use will yield

an estimate. The accuracy of that estimate depends upcn the

€stimator's understandinyg

of the software being maintained,

the environment withip which it will be maintained, and the

applicability of the «cost estimation approach to the soft-

ware and the envircoment. The estimator must ask the

following guestion: "Loes

needsin

this approach fit my situaticn anid

34

TFTRE TR TITHTNTRTYT OR TR T Y TR TV YT

.—\v‘-‘.—_-,-‘w

PO AR

o

PRl

[

P Y

i — s e i ——— ————— i v — —

The tasic management tenet: "You can't manage what you
can't measure" applies to the management of softw.re Tairnte-
| nance with the caveat "You cac't measure what you dcn't keep
data cn." Accurate and complete data collection iz the
heart of any algorithmic technigue to estimate software
pmaintenance costs. Without good data, tlhe parametric values)
‘ of the rodel cannot ke reliably derived and the model canrot -
be accurately caliltrated to the mainterance activity
environment.
The gquestion is then raised "what data must be
collected?" The data reguired falls into two broad catego-
ries:

e Characteristics of the Software -1
e Characteristics of the Maintenance Environmert.

Trke characteristics presented in Table 1II and telcw are

derived from published analysis of software cost estimation

mocels [Ref. 19, 20], and the authors' own analysis of l

(] available models [Ref. 1, 13, 21, 22], The listing is not |ﬂ

{ all inclusive: the immaturity of software maintenance cost '

estimaticn is such that an attempt at presenting a compre- 1

hensive list of all variables that influence software main- :

tenance would be presumptuous. It is intended more as a %
reference to the software manager in the hope that he or she
may ke guided toward a better understanding of the scope and

nature of the task.]

35 !

g Aes cfuh LA VN ates Sah Sam Lies UL SR am i Ae st SER S gPURed o S IS S A

ntur
ENND

€4

TABLE II
Software Cost Data Elemerts

Scftware Characteristics

Snvironmert Clkaracteristics

Develcrment Histcr
manpower (MM/yr
total effort
tctal time .
ervironmental descrip

Maintenance History
valid errors fcund
enhancements started
enhancements deferred
emergency fixes started
originai LOC
mecdified 1OC
new 10OC
original modules
podified modules
new modules
tctal modules

Type of Progranm
arplication
language used
structure

Ccmplexity
size
Oferators
Qferands .
dégree of unigueness
algorithm comfplexity
H/@ - S/W interfaces
input - outgut,flles
module complexity

Documentation
tcp-level
detail
currency

lines of code
hardware
software
marn-months

TEN

Personnel

experience)
langjuage familiarity.
support S/W familiarity
arplication fariliarity
participation in desigh
personnel continuity
real productivity

Computer attributes
size ard age
memory constraints
machibe constraints
operatlng systen
access ol maintenance
ersonnel to computer

36

T W TR T T T T WU IR T, W T Ny W, W TR T e e W e e TR T e T e T e e T T

X

L]

W .y Sy

scheduling priorities |
9
Software 7Tools k
software tools -
available to .
maintenance personnel {
. . »
Proarammln% Techniques
Zxtent to which
nodern pr.jramming
practices are used
Data Base
size . :
avaiiability to »
maint perSonrel
1
Al
.4
1
1
4
4
L)
®
- (|

i

T

A. SCFTWARE CHARACTEFRISTICS

1. Levelorment Bistory

Manpover during develcpment (MN/yr): Tiae man-morths (4M/vr)
rer year of the the development phase, broken down Lty rhase
of the lifecycle (€ega-y Requirements Analysis,
Specification, Design, <Coding, Testiny) and bty labor mix
(e.y., [Frogramamers, anhalysts , docunentation specialists,
€tc.) .

Total development effort: The total nunter of marn-ccnths

expended during develcpment.
Development time: Calendar mobnths of development.

Description of develcpment environment: A descripticn of
the develorment envircnment to include

e ccmputer used
e tocls and autcmated prcgramaing aids used
e languages used

e software engineering techniques and modern ;zrogram-
ming practices used.
It should te noted which of the above were new to the devel-

cpuent environment.

2. Plraintenance History

No. «¢f valid errors found per month: Vvalid errors found

sirce program acceptance

No. of enhancements started per month: Number of user or

envircnment driven enhancements started Since gjprcgran
acceptance.

37

P L

N, YN AP

"

T

CIaE s Sas ianm ma o ot att arad Sven sren gees sy e A e . T T DT T

No. of enhancements deferred per month: Inhancenerts

deterred for what-ever reason since proicam acceptance.

No. of emergency fixes started per month: Emergerncy fixes

since fprogram acceptance.

Crigipal lines of code: Llines of code in program at accegt-

ance.

Modified 1lines of ccde: Lires of code modirfied sirce

accerptance.

New 1LCC: Lines of ccde added since acceptance.
Total LOC: Cunulative lines of code.

Original modules: Mcdules in program at acceptance.
Bodified modules: Mcdules modified since acceptance
New modules: Modules added since acceptance.

Total modules: Cunulative modules in progranm.

3. Iype of Progran

Fanction: Scientific, transaction processing, <real tize
contrcl system, operating system, etc. The logical function

has a significant imfpact on the complexity of the progranm.

language used: High corder language (HOL) --COBOL
FORTRAN, PL1, etc.

Assemtly language

Uniqueress of languaje--is it common and
well-krown like FCRTRAN or a specific,

obscure assembly languaje?

38

e Ty ——y

Structure: Those attributes that coutribute to the r2ad-

akility cf the prograrnr form [Ref. 23: p. 72]). The hLierarch-

rL

ical representation that indicates tne relationship Letween
modules. A subjective parameter value 1s useful rLere. 3
"Well-structured" could mean <code <£featuring 1irndezerndent

modules enploying parameter-passinjy and information aidirng.

W |

"Poorly structured" could refer to spajhetti code reglete
with GO T0's .

4. Comrplexity

. RS

Size: Frogram size is measured ir ".iines of coie", an
expressicn which can gean many things. ©Exactly what consti-

tutes a "™line of «c¢cde" is difficult to define becatse

4L

programs consist cf more than executakle statenents.
Programs may include comment lines, data declarations, Jjot
contrcl language statements, fornat statements and macro-
instructions. A countinjy method may consider every state-
rent to ke a line, wlereas other methods may only consider a ’
subset, such as executable lines and data declarations.

Barry 3oehm uses "delivered source instructions™ as his

vehicle, and defines it as follows:

L

“his term includes all program instructions created by
project personnel and procCessed into machine code b7
som€ ccmbination_of preprocessors, coapilers, and assenm-=
blers. It excludes comment cards anl unmodified utility
software. It includes _job controi language, foroa 1
statements, and data declarations.

{Ref. 1: p. 59]

A more subtle problem cccurs when counting lines of

L

i

code for prcgrams written in HOL. FORTRAN conmonly uses cne

statement per line, although continuation lines are allowed

S ..

and <some FCRTRAN versions allow multiple statements jer

line. A freely structurel language lik2 COBOL uses punctua-

39

i . o - . o N . N SR P, WY

f*?

K analin 2ched

R P it s A S e A
a. o, .

tion to delimit statements and a 1line of code may contain
several statements. A line of code in P11 may be everything
written Ltetween semicclons.

Eecognition of the rproblem of how to measures size
is necessary to effectively manage resources. Programmer
productivity metrics are meaningless unless the software
manager understands the 1line-counting rules in effect.
These rules sh'ould te documented and clearly understood by

al. who interact with software maintenance.

Operators: The nuater of unigue operators and the total

number of orerators in the prograum.

Operands: The numter of unique operands and the total
nupber of operators in the prograa. Operators and ofperarnds
are used in M. Halstead's Complexity metrics [Ref. 24].

Degree of unigueness: A subjective measure of the unique-
ness of the function and the software systemn. The irmpact
here is rersonal familiarity with the problem, the hardware
and the software. TLe more <common the function, hardware
and software, the lesser the degree of complexity and the
more likely maintenance personnel will quickly understand
the systen.

Complexity of algorithm: Again, this 1is a sulbjective
measure, A more conmplex and sophisticated algorithm (e.g.,
electromagnetic signal analysis) will be more difficult to
understand than a relatively simple one (e.g., cayrell
calculaticn). If the mathematical sophistication cf the
underlying algorithz is beycnd the perspicacity of the
rrogramaers and analysts availabie then there evolves a

strong inclination nct to touch the program for fear it will

"hreak".

40

.......

Aa it Andh Faihctaih, Sag AR DA, e _—. . e e LY e s T . . W, WL Y W YT wWTw W T TWYy YT T

vy

B

X VR e

R .

e N AW 4 “‘_J_' g s

Y YR

L gun fun s

B/ - S/W interfaces: Types c¢f interfaces incliade data
storage and retrieval devices, on-line comaunication
devices, real-time command and cortrol, and interactive
tecminals. The numler and diversity of interfaces directly
impacts the complexity of the systen.

Input-output files fcrmat: The number of different formats
the system reads and cutputs, including card, tape, disk, or
screen fcrmats. The type of file format and the number of
filles accessed may impact system complexity [Ref. 21 :B-2].
The DoD Micro Estimating Model used to estimate develofrment
costs incorporates different file formats as input parame-
ters, but weights each the same [Ref. 19: p. 1A-15]. This
implies the impact on maintenance costs 1is either negli-
gible, «cr too dependent upon specific egquipment to inccrro-
rate in a general model.

Complexity of modules: Table III compares the sutjective
conplexity ratings as a function of the type of operaticm to
Fe primarily performed by the module [Ref. 1: p. 391].
While the ratings are designed to be incorporated into Barry
W. Boehm's COCOMC model, they do assist the software manager
in understanding =some of the characteristics of a progran
that directly impact complexity.

Documentation: Documentation is essential to software main-
tenance. Maintenance personnel must Le able to understand
how and why a program operates in order to perform software
maintenance. Documentation is the tool used to gain that
urderstanding. While software documentation is a ccntrover-
sial subject, most scftware exfperts agree on the following:
1. Well-documented programs are easier to work with that
undocumented rrograms, but incorrect documentaticn is
far worse than none at all.

41

A e Sl W el

LI A AL

T ¥ o WE Y v - Y e

TABLE 111

Module Complexity Rating vs Type of Module

anng

Lontr o
peratons

“Mputdahu A
perahors

Tevice Cepengent
_perations

Tata Manage nent
Cperations

very iow

Low

Normunai

High

Vary high

Extra righ

[Ref. 1:

Straightiine code
with g tew non-
nestad SP ~per-
ators: DOs,
CASEs. IFTHEN.
ELSEs. Simple
pradicates

Straight forward
nesting ot SP
operators.
Mostly simple
predicates

Mostly simple
nesung Some
intermodute
control. Decr-
sion tables

Highly nested SP
operators with
many com-
pound predi-
cates. Queue
and stack con-
trot. Consigera-
ble ntermodule
sontrol

Reentrant and re-
cursive coding.
Fixed-pnonty n-
terrupt handling

Muttipie resource
scheduhng with
dynamically
changing prion-
ties. Microcode-
‘avel control

p. 391)

Evaiuation ot sim-
ple axpressions:
tor example,
A= 8+CD-E)

Evatuation of mod-
arate level ox-
pressions, tor
axample,

0 = SQRT
(B2 4*A°C)

Use of standard
math and stats-
ucal rouunss.
Basic matnx and
vector opera-
uons

Basic numencas
analysis: mult-
vanate interpo-
lation, ordinary
difterental
equations Ba.
SIC truncation,
roundo!tt con-
terng

Dutticuit but struc-
tured NA near-
sinquiar matnx
equatons, par-
tal diferential
aquations

OiHficult and un-
structured NA
highly accurate
anatysis of
noisy. stochas-
¢ Jata

Simple read wnte
statemenis with
simple formats

No cognizance
needed ot par-
bcular pro-
cessor of 1/0O
device charac-
tenstics. 1/0
done at GET/
PUT level. No
cognizance of
overap

170 processing mn-
cluges device
selecton. status
checking and
TN DrOCessINg

Cperauons at
physical i/0
lavel (physical
storage address
transiations,
seexs, reads,
etc; Optmized
- C overiap

Routines for inter.
"upt diagnosis.
sarvicing, mask.
ing Communi-

[
caton hne 7 ¢
handhng

Davice iming-de-
pendent coding,
microprogrammed
operations

Sunpie arrays in
main memory

Single file subset-
ting with no data
structure
changes, no ed-
1ts, nO intermedi-
ate files

Mulufile :nput and
singte file out-
put. Simpie
structural
changes, simpie
adits

Special purpose
subroutines ac-
tivated by data
stream con-
tents. Complex
data restructur-
ng at record
lavel

A generalized, pa-
rameter-dnven
tie structunng
routine File
buiding, com-
mand process-
ng, search
optirmzation

Highly coupled,
dynamic reia-
tional struc-
tures. Naturai
language gata
managemernt

T
@

o

P pp———

2. Good docnumentation implies conciseness, consistency

of stvle, and ease of urpdate.

3. A program should be its own documentation: that is, a
well-docunmented program should take advantage of the
self-documenting facilities offered by the language
and should have its documentation built intc the
source code to the pmaximun extent practicakle
[Ref. 25: p.17%]. '

Documentation takes many forms. Robert L. Glass {Ref. 23:
p. 1€63] offers two categories of documentation of interest
to the scftware manacer: tor-level software definition and
detail-level software definition. Table IV descrikes the
two categories 1imn mcre detail. Additional categories may

include user, test and operation documentation.

Currency/correctness of documentation: To be of any value,
documentation must be both correct and current.
Cocumentation that dces not accurately reflect the current
state of a system is worse than none at all. Unfortunately,
most system documentation resides in tomes that jather dust
on shelves. Maintaining documentation is a tasx that
everyone tries to avcid, yet must be done 1if the software
systemr is to survive. Tools are available to aid ir this
task.

BE. ENVIKONMENTAL CHAFRACTERISTICS

1. Eersonnel

The impact of personnel characteristics on software
mainterance and the management of personnel to accomplish
the software maintenance function will be discussed in
Chapter VI. This section will define the terms used.

43

TABLE IV

Maintenance-Critical Documentation

I. Tcp-level software definition (document)
a. Overall structure suzaary
b, Overall database summary
c. Design decision data
d. Underlying philosophy
e.. Midlevel structure(s)
f. Midlevel data base(s)
g. Index to 1listing

II. Dletail level software definition (listing)
a. Commentary for
1. Detail structures
2. Detail database
3. Detail functions
4. Implemeptation anomalies
b. Readable pames
c. Structured, indented code

[Ref. 23: p. 163]

Programging experience: The nunmbker of years of rrograrmrming
experience an individual has. When used as an input to
estimate cost estimating models, it 1is assumed that nore
experience has a positive impact on reducing ccsts. This
pay ¢r may not be true, and is heavily dependent on the

cther characteristics listed below.

T e

il b,

A.L

k —" TTT———— It At it Shdh Biute Bhete Mgk SRt Hiadcliady
»
-
|
9
3

Familiarity with language: A subjective @nmeasure of the
exrertise an individval has with a particular language.
Sore studies have shcwn experience in a nunber of languages
is of greater benefit than ccnsiderable experience 1in cne
larguage.

Familiarity with hardware and support software: A sutjcc-
tive measure of the experience an individual has with the
computer and its suppcrt software (e.g., operating systerL,

compilers and availatle software tools).

Familiarity with function: A subjective measure of the
understanding an individual has of the software's function.
This Lbeccmes important in complex functions, particularly so
where the underlying algorithm is abstruse or the system is

poorly-documented.

Participation in design effort: The degree to which an
individual was involved in the design and development stage
of the scftware, Such experience 1is invaluable in helping
maintenance perscnnel understand the software's underlying
logic and philosophy.

Personnel continuity: Personnel continuity may be repre-

sented as personnel turnover. A maintenance staff with low

turnover will spend 1less time on job communication and

p
[trairing ani more on froductive work.
3

Real productivity: Froductivity is a highly ccntroversial
® -
a rmetric ttat 1is extremely difficult to define. A tyricail
3 productivity definiticn of "lines of code written [fer man-
" month" fails on four counts.
{
PY 1. The definition of "lines of code" is imprecise, anc a
[croductivity ©nmeasure incorporating it suffers fron
sensitivity tc line counting variations.
L
45
[]

Y

ulal

a

P Ty, T ey
/) 3
. .
‘e

e e a0 o s oy
) . .

2. "Man-month" is a measure of effort, rot of zrocduc-
tivity. While there is a correlation betweer eifcrt
and productivity, it can be represented using the
metric "“man-tzcnth" only with the greatest caution
[Ref. 12: p. 16].

3. Ccding is but a small part of tne mainterance cffort.
The <critical area of maintenance 1lies ir uarder-
standing the fprogram and what must bte changed. There
exists no accertable metric for measurinj the rate at
which a human may understand a complex problem.

4. There exists a tendency to penalize 3Ol [frcgram icn
favor of assembly 1language programs Wwhen usirg a
“lines of code" metric. Assembly lanjuages require
more liines of code to irpleament a given function than
lCL, thus more lines of assembly code can te rrcduced
by a programmer during the coding portion of mainte-
nance [Ref. 26: p. 41].

3 more useful definition of pregraammer productivity

may ke in terms of rrogramming £functions per unit of time
[Ref. 27: p.34].

-

<. Ccmputer Attributes

Size and age: Physical attributes of the host comfputer that
affect software maintenance include the size (eg. mairframe
or mini), the age, memory constraints, machine constraints,
and the cperating system it will support. A large comrputer
will support more sophisticated software tools than a
smaller computer of the same age [Ref. 1: p. 460], and a new
mini may have more carability than an older mainframe. The
age of a computer 1s critical in terms of vendor sugport
(enthusiasm to support a Jgiven architecture declires with
time), fFrocessing capacity, pemory arg scftware
sophistication.

46

ST T YT wT vV, T e T8 WL, T e

Memory constraints: limitations are imposed on the rerform-
ance of software maintenance Lky the size of the availatle

memory. A machine whcse production work consumes 90% of its

5. TR

pemory leaves little to dedicate to enhancement maintenance.

Machine constraints: Machine constraints are the character-
istics of a particular computer that may adversely irpact
software maintenance,. These may 1include such characteris-
tics as unigque architecture, high operating costs ¢r a

machine-specific language version. Such constraints vary

AR, e

from activity to activity, but it is sufficient to say that

r. RS

a software manager shculd be aware of the limitations of the
host comfputer.

Operating system: A sophisticated operating system enhances

the productivity of raintenance personnel by allowing inter-

4“_— A

active testing and debugging. Turnaround time (the time
Fretween the entry of a command or a program and the comput-

er's response) impacts the speed with which mainterance ray

JL N RN

ELOgIre€ss. A sophisticated operating system that supfports
virtual memory and a wide range of software tools 1is far
more conducive to e€ffective nmaintenance than a batch-

oriernted operating system supporting a compiler.

Access of maintenance personnel to computer: The number of

R _ YOS

terminals dedicated tc maintenance personnel, and the foli-
cies regarding tersinal use.

Scheduling priorities: The priority given to rainterarce

Dend l‘l'u)

functions. This 1is primarily a manajement corcern, and
requires both an awareness of and commitment to the impcr-

A

tance of software maintenance.

PR . P

47]

Py

e At e g — D ——s I 2 o e . e R TTTRT——————

3. Software Tools

Number and type of software tools that may be
applied to software maintenance. Tools are discussed more
fully in Chapter VII.

4. Programming Jechnigues and Standards

The extent tc which modern programming [fpractices
(structured programring, information Liding, etc) are
applied to software maintenance. Programming techrnigues are
also discussed more fully in Chapter VII. Some measure of
modern programming frractices used are common to the maijcrity

cf cost estimation mcdels studiegd.

S. PData Base

The implications of data base to software mainte-

nance are discussed in Chapter VIII.

C. RECCHMENDATIONS

While the data base required to estimate software main-
tenance costs often exists, the data are non-homogeneous.
There are no definitive standard metrics; only a collection
of interpretations. The definition of software maintenance
itself may vary within an organization itself. A software
manager who subscriktes to the exclusive defirition may be

replaced by one who frefers the inclusive definition. Any
data collected in ttlte past would be of little value tc the
current manager. The definition of sorftware mainterance

also frequently varies from activity to activity.
Additionally, the dJdefinitions of "lines of code" and
"complexity" may vary from activity to activity. The data
collected using intergretive metrics are generally unusable

outside cf its source environment.

48

Tc accurately estirate software 2raintenance ccsts,
therefcre, it 1s necessary to start with a standardized set
cf data. A standardized set of data must be collected using
standard, universal metrics. It 1is hoped that oD anid
industry may agree upron a uniform set of software metrics.

Once a standard set of software metrics for cost estima-
tion 1is derived, data nust be collected, stored in a
‘centralized location, and applied to existing cost estima-
ticn models. The use of standard data would go far to
improving the accuracy of current models. Analyses of the
data may then re «ccnducted that will result in the next
generaticn of more precise, mcre accurate, and viable s=oft-
ware cost estimating methodologies. A uniform data collec-
tion instrument must be designed that will enable data
collecticn in a consistent manner. This approach is manda-
tory tc avoid problems arising over which data to coliect,
when to collect it, and how to paintain the data in a

nachine readable format for storage and analysis.

R, vw™

V. MAINTENANCE COST ESTIMATION

-_—— - - 1R

A. OVERVIEW

The use of the term "art" to describe the process of
estirating software @pmaintenance costs is particularly agt.
%¥hile much research bas been devoted to software develcrrent
cost estimation, little has been devoted to maintenance cost
estimaticn. Indeed, until the Lientz and Swanson study
[Ref. 2] the characteristics of software maintenance and the
factors that influence it were imperfectly understcod. Many
techniques and pararetric mwmodels exist today to estimate
development costs but the few models available to estimate
maintenance costs are simply extensions of existing develop-
zent nrodels, and generally assume tnat the same factors
influencing development costs will also influence nrmainte-
nance costs [Ref. 1: . 536, 13: p. 7].

A krcad distincticn of approaches to estimating software
maintenance costs include traditional methods and parametric
models. Traditional methods rely primarily on the estima-
tor's (or group of estimators?') experienced Jjudgenment.
Parametric models presume that relationships exist Letween

costs and certain software characteristics [Ref. 17: p. 9.

E. TRADITIONAL HMETHCLS

Direct Estimating

Direct Estimating is the application of experienced
judgement in its purest form. The cost estimate is made
tased on the individual's knowledge, experience and judge-
ment. Current knowledge and experience relative to the
particular activity reing estimated is vital to a creditatle

estimate. Excellent judgement 1is «critical since future

50

A A — A

i

paintenance activities are not a;t to Le the <saze as
Erevicus cres. Direct estizatin; nay te coriinel with
decomrpositicn to yvield a4 more accurate estinate. The S0ft-
ware system may be deconposed into siaccessivly lower fuanc-
tional sutcomponents. dhen a low enoujh level 15 reached to
estimate accurately, the estirmator applies ary afpprorriate
techrnigue to estimate each component's cost. Tarkle V shows
a possiftle subdivision of maintenance 1ato functional

subcomporents.

"""" T
TABLE V

Softwvare Maintenance Functions

=
[I+)
[l=]
o
LO)

ement/Superyvision ianning, directing, coor-
inatind , and corntrollirg.
software maintenance activity

Admipistration general office support

——— . e i e e e

Apalysis studying a software fprotlenm
prior td taking action

Design developing a solution to a
software problen

grogramming coding and unit testing cf
software changes

Systen Testing formal testing of a changed
software testing

Ccnfiquration Control upkeep of master progran
libraries, backup tapes,
program listings, etcC

Pocugentation making changjes to user
manuals, spécificatiorns,
test plans, etc

Training train users on progran
changes, training 3f new soft-
ware maintenance personnel

51

- @ .
. "

vy rVvVvew

The use of direct estimating and decomposition (essen-
tially rottom-up estimatiny) offers the advantages of
enhanced estimate quality since random error in the systen
estimate will be reduced by accumulating subcomponert esti-
mates, and Ly enhancirg the understanding of toth the systen

and the maintenance task.

Analogy

Analogy is similar to direct estimating, and involves
comparing the estimated effort of periorming maintenance or
a progran with similar historical exanmples. The exfperience
of ancther project serves as a baseline for the estirate,
which is then rodified by differences in project character-

istics and available resources.

Judgement Enhancing 7Technigues

Judgement enhkancirg techniques are primarily based on
experienced judgemernt. The accuracy of the estirate 1is
ennanced througyh the uase of methods that reduce tie defpen-
dence upor one individual's judgements. These include Crcug
Consensus or averaging. A grcup consensus technique may be
a typical vreeting, two individuals discussing the zatter
over lurnchk, <cr the more formal Delphi technigue. The
Wiletanl Delphi techrique [Ref. 1: p. 335] seekxs to infrcve
the feedlack of the Delphi technique and still avoid the
pitfalls of group dynamics in a typical meeting. The

process is time consuming, but

..has Leen highly successful 1n combining the freeg
cussion advantages of the group meeting technigue and
advantages of anonymous éstimation o the standard
phi technique [Ref. 1: p. 335].

dis
the
Del
A straightforward technique is to average several indepen-
dent estimates. The independent estimates may be ctitained

using various estimating methods.

52

L A e B B e om e

Traditicnal methcds offer the software aanayer ease of

use and familiarity cf approach. Reasonakle estirates of
software maintenance costs may Ze obtained usin; tracitioral
methcds. However, the validity of the estirate rerains
dependent upon the atility of an individual (or grcup) to
correctly analyze tle past and make a valid judgernent fcr
tne future. The analysis of the past nay pe affectel by
incomplete recall, Fiases, and inappropriate focus ("didn't
see the forest for the trees"). The judjement of the future
may te influenced by optimism, incomplete understandirny cf
the e€xisting systen, or the rpressure of deadlines andé

superiors.

C. PARAMETRIC MCDELS

Parametric models presure that juantifiable relatico-
ships exist between software maintenance costs and certain
software characteristics [Ref. 17: p. 9]. Such relaticn-
chips are usuaily guantified by statistical analysis of
hWistorical software cost data. once quantified, the rela-
tionships become variatles that serve as major cost drivers
in mathematical models.

Pararetric models may take either a macro or a micro-
level aggroach, or employ a combination of both. In a
ricro-level approach, the model addresses the 1individual
compcnents of a system. This approach offers the advarntages

of deccrmposition: reducing the system to components for

wihilch the level of effort may be easily estimated, and
€nnancing the software manager's understanding of the
system. A macro-level approach focuses 1instead on the
cverall system and its interaction with the envircanment. A

macro-level model 1< more apt to deal adegquately witl the
effects ci external factors, while a micro-level aprroach is

likely to Le more efifective 1in estimatiag pctential

53

i®,

A A 4 nd

T LN i vl nmd -——y
'nv“ ’ . Q

A

—y

maintenance ripple effects. Parametric models have been
categorized in a number of ways by different studies
[Ref. 1: pp. 329, 19: p. 4-11, 17: pp. 7-12]. The authcrs
feel that <categories tased wuron how the model itself wvas
derived are of more value that ones based upon the charac-
teristics of the model. Such a distinction should aid a
software manager in deciding the applicability of a model to
his or her own envircnment. Robert Thitodeau [Ref. 19: p.
4-11] presents the fcllowing categories:

Regression: A class of model structures whose design is
btased on the selecticn of the life cycle element of interest
{e.g., 1life <cycle effort, development effort, cr ccding
effort) and a hypotiesized relationsaip between the element
and a number of selected inputs. The parameters of the
hypothesized relationship are obtained by regressicr and the
model tecomes a single cost estimating relationshirp.

Heuristic: This mnodel structure combines observation
and interpretation with supposition. It 1is the fcrral
representation of the subjective process of applying exgeri-
ence. Relationships among variables are stated without
justification (e.g., cost per pound decreases with
increasing size, development effort is related to tyfpe cf
application). Then subjective , seai-empirical, or empir-
ical adjustments are made to the base estimate. Heuristic
models ccmbine a numter of different estimating techniques.

Phencmenological: This type of model incorporates a
concept that 1is explained in terms of a basic phencmeron
that 1is not limited to the mechanics of software
develcrment.

Parametric models offer the software manager several
advantages.

1. They are objective and not strongly influenced by

personal biases or motivation.

54

- " N .. . - - s - < - - a e o IS WU DT, S S

T T T T T YT T ———w

FoR

. N wi. 5 XU

i

I YOOI, e

b e

i

i

2. They are repeatable, given the same input fparameters.

3. They objectively represent historical cost experiernce

and are calibrated by historical data.

4. They are efficient and able to support further esti-

mates or sensitivity analysis.
5. They are easily automated.

6. Finally, they offer a supportable conclusion, one
mcre likely to survive the scrutiny of budget-
ccnscious superiors.

While parametric model are superior to traditiorail
methods in most respects, they are not, however, periect.
Most models are not satisfactory for wide range cf apriica-
tions without considerable adjustment. The disadvantaces of
parametric models include:

1. Historical data used to derive and calibrate the
nmodel may not accuratedly represent the [rresent or
future. Research to date on software cost estimation
has often been based on systems developed using out-
ncded, inefficient methods.

2. They are unable to deal with exceptional conditicrs.

3. Mcdels cannot compensate for poor estimates of rara-

metric values (garbage in - garbage out).

4. The majority of models available are either not
arplicable to the maintenance problem or rerpresent it
imperfectly [Ref. 1: p. 342].

Farametric models can be used to estimate software main-
tenance costs with reasonable accuracy. As with any tocl,
the tocl wuser must fully understand how the tool operates
and hcw to use it effectively. Effective use of parametric
models tc estimate scftware maintenance costs reguire under-

standing several key issues.

55

. " < T T R ————

u‘._

»\)

e .

———

AARAES can aun au 4

Every model 1is dependent upon experienced 3judgement
for its parametric values. This is particularly true
for subjective factors such as system complexity and
experience of rersonnel. There 1s no realistic way
to avoid wusing experienced Jjudgement to estimate
maintenance costs regardless of the method selected.
The model must be calibrated to one's cown environ-
ment. The model itself is normally developed fronm a
representative sample, as in Barry Boehm's CCCCMO
[Ref. 1], cr from an observed phenomenon of software
development, as in lawrence Putnam's SLIM [Ref. 13].
Mcdifications of «certain parameters must be made to
"fit" the model to a particular environment. These
nodifications <can be done <either by the <scitware
manager or by an expert consultant with experience in
the model. Either way, the calibration prccess is
alncst entirely judgement-dependent.

Tre software manager must have access to copsiderakle
historical data about the system being maintained ang
the maintenance environment. This data is critical
tc estimating parametric values and calibrating the
mciel., Unfortunately, few software activities uuder-
stacd the ippcrtance of accurate records of software
maintenance, nor are they aware of what characteris-
tics of the software and of the environment should be
mcnitored and recorded to support the cost estimation
function. Data management and its relation to soft-
ware maintenance is addressed in Chapter VIII, while
a discussion «cf the characteristics of software and

the environment that should be monitored and reccrded

was discussed in Chapter IV.

D. ESTIMATING MAINTENANCE COSTIS

Several different software cost estimating models have
teen developed and vvsed by DoD and industry, witn varying
results. This thesis will not evaluate any par+ticular
model. A summary of studies done to evaluate e€xisting
moéels is presented in [Ref. 28: p. 10]. Instead, tihis
section will focus on considerations for planning an esti-
mate, criteria to <subjectively evaluate a software ccst
estimating model, and will summarize a view of the status of

software cost estimation within LoD.

1. PRlanning an Estipate

Developing an accurate software maintenance cost
estimate requires a significént amount of effort. The soft-
ware panager should r[flan the estimate just as any project.
The: process for planning an estimate developed by Earry
Boehm [Ref. 1: pp. 310-328)] and tailored for software main-
tenance ty G. Klemas [Ref. 17: pp. 30-31] is summarized in
Table VI.

2. Evaluating a Software Maintenance Cost Model

How can a software manager evaluate the applicability cf a
particular model +to his or her own environment. 3arry Ww.
Boehm cffers the follcwing criteria:

1. Definition: ©Eas the model <c¢learly defined the costs
it is estimating, and the costs it is excluding?

2. Fidelity: Are the estimates close to the actual costs
expended on the projects?

3. Olkjectivity: T[L[oes the model avoid allocating mcst of
the software cost variance to poorly <calibrated
subjective factors (such as complexity)? Is it diffi-
cult to jigger the model to obtain any result jyou
want?

57

PP T Ve W

g g

. YO

-4

=

i

. ..

i

Aa's

.
-l
«
1
1
i
M
!
A
i
o
|

— IS A A St Sl el Ml Jah Sl el ARG gl el JiME

TABLE VI
Software Maintenance Cost Estimating Procedure

1. Determine the furpose and obijective of the esti-

; mate. _Identify all costs that neéd to be included in
o the estipate and establish accuracy reguirements.
2

. Prepare the estimate [plan, _ stating purfose,

rd objectives and requirements of the estirate.

Determine data and expértise needed to make the esti-

. mate, and decide ufron a technique. Specify resources
L . and time needed tc make the esfimate.

3. FEeview the plan. Verify objective validity and
resource availability.

4

»es 4., Gather the necessary data. . This stage will te
relatively direct for ah existing system provided
there is a current grogram maintenance marual, _ I an
estimate needs to be "done for a recentiy deliverel
system, obtain as much data as possible about 1its
{ déeveiorment. Coupare with the best historical data
u availafle on similar systens.

®

. %, Cktain several independent _ estimates using
3 various models, Evaluate applicability of a model to
- estlmatlng situaticn, and calibrate to own envicon-
= nent. pply_ experienced judgement to 1independent
g estimnates and derive an estimpaté that optimally satis-
fies the software maintenance requirenments.

:l! 6. Verify that the estimate makes sense.

S 7. Document the verified estimate and stand ready to
change it.

4. Ccnstructiveness: Can a wuser tell why the @odel
gives the estirate it does? Does it help the user

understand the software job to be done?

° 5. Detail: Does the model easily accowmodate the esti-
mation of a software system consisting of a nuaber of
subsystems and units? Does it give accurate thase
and activity rreakdowns?

6. Stability: Do small difference 1in inputs prcduce

small differences in output cost estimates?

P ——— T 13 R - SnRaRm S Aae Y Cafit- it st M AL i S b~ iR) fadl AN Sl S Al Sl i e v e e v e e T T T i
N F
4
’
3

o

t' 7. Scope Does the model cover the class of software
: projects whose cost you reed to estimate?

:(ﬂ 8. Ease of use: Are the model inputs and opticns easy
[to urderstand and specify?

E 9. Parsimony: Cces the podel avoid the use of highly
- redundant factcers, or factors which make no appreci-
{iﬂ akle contribution to the results? [Ref. 1: p. 476]

E- E. DEPAFTMENT OF DEFENSE AND SOFTWARE COST ESTIMATING

Dera tment of Defense has a requirement for a software
cost estimating model and methodology at three stages cf the
soZtware lifecycle [Ref. 28: pp. D19-22].

1. Requirements Analysis: The objective here is to

examine long-range ccsts of the software given a reasonarlrle

system proposal. Cost/risk assessments and budgetary esti-
mates are performed here. Table VII shows the required
inputs and outputs of such a model. The accuracy regquired

Ly a model in the reguirements analysis phase 1is less than
or egual to S0%.

2. Specificaticr and Design: A software <cost esti-
mating methodology can be used to assist the government or
contractor in estimating the costs of a particular systen
design on either a near-term or longer-term 1lifecycle cost
kasis. The majority of the existing models take this
Eerspective, Table VIII shows the required inputs and
cutputs cf such a model. Estimate accuracy reguired in this
phase is within 25% of the actual.

3. CLlevelopment, Cperations and Maintenance: A scftware
cost estimating methodology can be used to assess the cost
impact of changes during the development phase, and estimate
the cost of implementing a <change during the operations ani
mainterance phase. Table IX shows the required inputs and
cutputs cf such a model. Required model estimate accuracy is

within 10% of actual values.

59

vww vy

I Se A A A Il Sadil S AF G A A SN 208 MERY A iy R At il it adh] RN A 4 Padinrt A

TABLE VII
Model Parameters for Requirements Analysis Phase

INPUT DATA OUTPUT DATA
System Requirements long Range Budget
erformance Projectidns
esting .System R & D
. protot¥pes
Support Philosophy production est.
maintenance maintenance est.
manning
Technolog;
hardwagé
software

Historical System Data Base
sirilar systems
similar technologies
sigilar methocdclogies

[Ref. 28: p. D21]

A major element of the DoD Software cost estimation
goals is establishing a reasonable, representative and stan-
dardized methodology [Ref. 28: p. D23]. DoD should not
adopt any specific model and declare it the standard; no
model offers the accuracy reguired by DoD, nor doces any
model adeguately rerresent each phase of the 1lifecycle
(Ref. 19: p. 5-29, 28: p. 16). 1Instead, DoD should

-+e«Specify the general procedure, for estimating soft-
W"arLe€_costs " (i.e,, major activities, nodel seléctica,
model documentation,_ éstimate documentation and manage-
nment actions required to use the results of any software
cost estimation effort). The establishment of this
estimatirg methodclogy should be in concert with _the
data colléction gcalS and should =nake use of the data
collected to "finé-tune" current models and develop new
nodels The modelémethodolog developed should pcssess
the foilowlng attritutes: [Réf. 28: p. 24]

60

PSRV . . " ;AJ‘_.: P dL

19

TABLE VIII

Model Parameters in Specification and Design Phase

System Requirements
gerfgrmance
esting

Docurentation Regmts
MI1-STD,
ccemercial
Schedule Regquirenents
Suppert Philosophy
government
ccntractor
manning

Ccst Estimates

CUIRUT DATA
Lcng Range Budget
Projection
system R & D
prototypes
production est.
maintenance est.

Mgmt Support Activities
trade-off analysis
risk analysis
resource nix
impact _assessanent

-schedule
-personnel

Development Cost

system LCC Estipates
hardware software
software . hardware
actual vs predicted support
maintenance
Technology documentation
hardwafte facilities
software manning
Historical Data
sigilar systems
similar technologies
sizilar methodclogies
{Ref. 28: p. D22]
e Cren disciplire: The metaodolosy should te flexitle
and adaptable to specific enviroaments. The fproce-

dure for selecting a specific

the exercise c¢f discretion.

e The use of multiple

allcw for the employment of a number of @models as

required by the

application.

models:

lifecycle phase of fcr

model should allcw for

The methodology should

.M . SRR . 2SN . NV

PPOUIEN %

Sl

TABLE IX

Model Parameters in Develofpment and Maintenance Phase

IN2UT DATA QUTPUT DATA
Schedule Manhours by Function
design

Software] code

Characteristics test i .
lines of code documentation, etc.
larguage
ccelfleXxity Schedule

Testing Reguirements

Suppert Tools
supgort software
test software
surport personnel

Test Facility Carpabilities

[Ref. 28: p. 24]

e Reproducible: The methcdology used should yield the
same estimate of cost given the same data and
situation.

e Living methodclogy: The methodology must ke updated
ccnstantly to reflect the current state of software
technology. This is achieved through instituticnal-
izing methodology and through DoD instructions, regu-
lations and standards.

Desirakle characteristics of a software maintenance cost
molel include:
1. Automated execution
2. Transportable for all commonly used computers.
Written in HOL.

62

P U G P S)

o ¥ N

- 3. Model algorithes should be thoroughly documentec and
available to all users.

}Cf 4, Outputs should ke flexitle and tailorable to several
, arplications.

5. The total set of models should cover the whole soft-
ware lifecycle, although individual models may be
srecific to certain phases or certain applications .

6. Models should deal effectively with missing data.

7. Mcdels should Le conservative of use of resources for
data loading ard computer time [Ref. 28: p. 26].

Desirakle outputs of a model include:

1. Total manpower effort by phase and by effort type

2. QReasonable development tinme

3. Apnount of documentation required

4, Staffing profile

5. Ccmruter costs

6. Cost-schedule trade-off factors
7. Sensitivity of output tc input variations
8. <ZIxpected wmaintenance required ‘
9. HMilestone occurance tinmes .
10. Risk Profile [Ref. 28: pp. 26-27)

F. THE DEATH OF SOFTWARE I

Ar early objective of this thesis was to propose a rodel

for predicting the [pcint at which the software system must

ke rerlaced. That cbjective was beyond the scofpe of cur *
eflort. Instead, some views are offered on what to think
about.

It has been demorstrated that there are no hard and fast
rules that may be used to accurately predict the lifespan of $

a system. Many factors come into play, and the influence of
any factor varies considerably from system to systemn.

63 \

——

In jeneral, the lifespan of a system may lbe said to Lke over

if:

eIt fails to adapt to change

eIt is replaced by another system perforaing the

sane function [Ref. 29: p. 32].

While replacement of software is conclusive and cbvious,
failure of software to adapt to <change requires furtter
exnlanation. Four primary changes [Ref. 29: pp. 32-33] nay
calse the death of a scftware systen:

1. Hardware changes: Changes of this nature may te as
catastrophic as the replacement of the entire
computer system or as relatively simple as the expan-
sion of perigherals. In ceither case, software
systems wri.ten in machine-specific language may well
ke doomed. Even so-called "standard" languages like
CCBCL and FORTEAN are not immune, there Leing almcst
as many versicns of these standard languages as there
are computer manufacturers. Computer manufacturers
recognize the difficulty of converting software
systems and advertise compatibility betweer their
rroduct and a ccmpetitor's. The vendor's definition
of compatibility and the wuser's may differ consider-
altly, however.

2. Software changes: All software systems depend ugon
others. Aprlications crrograms depend wupcn cther
programs for input and the operating system for
resource control. The operating system in turn,
relies upon its compilers and utilities. A major
scurce of software change 1is the manufacturec's
system software, the package of operating system and
associated utilities required to operate the computer

systen. A change to system software may have a

64

a . - o - - e PP VI T WL S R 2 Sa e PR SR P Wt

b

L -

- .

Y TN

L AN

N EPINLYRY | RN SRR, YLy CSrarr, s

VY PRV NP

¢]

catastrophic impact on application s2ftwire svste:xs,

but usually system changes occur iacreaentally. The

w |

application systen a@ust therefore adapt to each
incremental change, or risk being rendered incper-
akle.

3. Changes 1in reguirements: As previously ncted,

enhancements due to user requests are the 11ajor

By

1 scurce of software maintenance. Many user reguests
! resuit from a change in user reguiresments, citen
because the requirements were poorly thought cut ic

{e the original design. If the original design or the [

-+

software system's internal factors are such thza

podifications cannot ke made to meet changes

in
requirements, the system falls into disuse and should

. JON

{q e replaced with a system that can be evolved.
4. Changes <caused by errors: All software <corntains

errors. Correcting arny single error usually intro-

D SRS el Sndt shvh

duces 0.5 further errors [Ref. 29: p. 33], so the 1
+t error correcticn process never ends. Software that »
tecomes riddled with errors is abandoned by users,

and dies. Sufficient resources must be applied to

PRSI

the correction of errors to keep a given scftware
(] system viable and healthy.

Given that software must change in order %to survive, how

ol L

can a manager econcmically justify any given change in the
software? How does a manager know when to end the 1life-
q cycle of a software system and replace it with another? The q
answer is conplex, and is influenced by economic factors,
- variatle (and unxnown) user reguirements, rapid new techno-
logical advancements and other practical considerations.

q The perceived benefit of the existing system can be

U PSP

[thought of as the carabilities of the system and the value
those capakbilities have within the organization. This 1is

L clearly a subjective evaluation, and may be characterized as

65

vy - e R 0 . I A At A i O Tt i o

the scftware manager's answer to the guestion: "What dces
ir..s sy;stem do and what is the wvaluae 0I what 1t Jces tc the
organization?" The =software nanagJer aust then «compare the
tenefit cf the system to the ccst of operating the systen.
Tre sSeccrd rortion of the decision rule deals with coamparing
trner €xisting svystem with the proposed replacement in two
Wal'S. First, the marginal cost of maintaining tne existirng
system is compared tec the marginal cost of implementing the
[roposed replacement. The method for comparing the ccsts of
the two systems is prcbably best done using a marginal cost
representation, suck as the unit cost per transactica.
Second, the perceived benefit of the existinj systea 1is
conpared to the perceived benefit of the proposed reglace-
Dent. The replacement system must be at least as carpaci=
(i.e., equal perceived benefit) as the existing system.

Cnce the decision has been made to replace tne existing
system, the software manager must also decide the timing of
tLe replacenment, The benefit to the organization (in terms
of capital and resources) of keeping the existing system for
ore more year should ke compared to the additional capakili-
ties expected from the proposed replacement if imogplemented

this year.

ty
1]

The software manager's replacement decision rule mav

stated as:

If the perceived benefit o the existing syster <Is
exceeded by the ccst of obtaining that berefit, and 1:
the marginal cost of the existingy <systen exceeds the
marginal cost of the proposed replacement (including a
facter for relialtility problems with the new systenm),
then the existing system shoull be replaced.

It i=s 1implied in the decision rule that there exits the
opportinity cost of not having the wuse of the frorosed

replacezent that must also be considered.

66

TTERTTYOT

v W, W

TSI DAy

o

[]

l. P T T R . S T S T Y T T

L
L
e

?-v-,- —— T —— —— — - > Ty T T T T T

g

L
‘ In the past, tte major cbstacle to replacini a systex
h
has keen the considerable cost and uncertainty involved in
(develcopirg software systems. This is true even today;. The
p

] future hclds promise,through the use o0f so-called rourth-
generaticn languages and advanced software tools, of greatly
{ reduced development cycles and considerably enhanced systen
r. reliakility.

.
N~ N SO, 2 CORAERE AT ANON = X S P S S T UNCPIe

67

1
i
1
|
1

L e . - . : — e s b a— - PO lthin

T

PP T ——————~ MR S A S 2 S i A A R A R AR Sl S =)

VI. PERSONNEL CONSIDERATIONS

e e e i e . - i s e et T . S s o

A. INTRCDUCTIOR

The Dol Jcint Zervice Task Force FEeport on Scitware
rroblems stated that "...fpeople are the most inmpertant
resource in any software or support effort" [Ref. 31: p.
247. While the cost of hardware plummets, the cost oZ
people is rising. Ey 1985 the <cost of hardware will bke at
one-tenth the 1979 rate, and the <cost of people will e at
twice the 1979 rate [Ref. 32]. With manpower as the domi-
nant element of <cost in performing software mairnterance,
the =software manager must better understand the <critical
aspects of perscnnel management in software maintenance.
Considerable gains can be achieved through effective manage-
ment of maintenance fpersonnel and of the maintenance func-
tion. The personnel issue will be examined from two
rerspectives; that of skills and attributes are recguired in
a mainterance prograsmer, and how to best organize mainte-

rance persoanel to accomplish the maintenance functicn.

B. SKIL1S AND EXPERIENCE NEEDED IN SOFTWARE MAINTENANCE

The skiils and experience rejuired by the rmainternance
proyrammer are well summarized by a juote frorm the Pelkllerman

document.!

T¢ make this situation, vivid, <consider a navigatjon
aodule on a, superscnic¢ aircraft, Let us_ supposé that
the navigation mecdule is supprosed to provide t he correct
position of the aircrart to within 10 meters anywhere icr

lEebkleman is one of a series of Department of Defense
(DoDé analysis papers which lead to the creation of the LoD
standard lahguage, Ada. Ada is _a regjistered trademark cf
the U.S. Departhent of Defense [Ref. 33].

68

Clllaise Jon agniaan {

P>

.~ LA Wk Sl Salh Jedh Sal I sl DS SR e Lw

the atmosphere of tlke earth. The module obtains ingput
frcmn gyros, accelercmeters, clocks, doprler radars ard
navication sigral receptors which can listen to satel-
lite "and grouhd station signals. Sugpose it has beern
deternmine {perhags by exercise o self-diagrnosing
interface mon;tgrln% procedures and executior of fault-
detection decision trees) that none of the input devices
is [sic] malfuncticning. But suppose that the results
produced by the module are consistently in errcor.

let us further suppose _that the actual error 1is a
superimposition of errors from three separate sources:
(1? a simple programming error involving unintentional
clcktering of "the contents of a _global variakle bz‘a
local_ procedure_ which _incorrectly _assumes that _the
glctal variable is local,_ (2) the decay in numerical
dccuracy of a certain _class of computations_ through
1nadegugte numerical analysis of error propagation, and
(3) ., failure to design he module to take” account of
coriolis force, 1leading to systematic errors on north-
south trajectories at high mach numbers.

Each of these error sources might fall within _the
rovince of distinct skills at the command of distinct
rained specialists. Onlg a physicist familiar with the

laws of inematics and ynamics might Dbe expected to
realize and correct the coriolis fofce error. Only a
numerical analyst familiar with the _laws _of numerical
error propagation might be expected to discover arnd
correct the error of humerical accuracy deca{. And only
a rrogrammer trained in the wuse of Tnomenclature scoge
rules in the prograsmming_ language used to _implement the
module might "be expectéd tT discover and correct the
error of unintenticnal information clobbering.

If the actual error is a superimposition of _these
sorts of errors at _these _three sorts of levels K of
prcgram logic, it 1is doubtful that a maintainer, trained
only in one _of the three relevant skills, goula succeed
in Tuntangling the superimfposed errors, 1in isolating
their soufces, and in making appropriate corrections.

In a similar vein, if the system . is being enhanced to
meet new requirements, the skills_ cf” regquirement
analysts and "designers may be required to modify the
requirements and he design increlentally and to bring
thé regquirements and deszgn documents up-to-date consis-<
tent with the enharcerent. Ir fact because of the
presence cf more ccnstraints, 1ncremen{al.reanaly515 angd
redesign might be more difficult than orl%lnal analysis
and deSign.” It may not be enough for he maintalner
skilled orly in the lmplementation, test and _integra-
tion phases”of the software life cycle fo perform acts
of enhancement that call for the réplay of skills exer-
cised ty teams of =killed specialists at wearlier life
cycle phases -- teams now isbanded and unavailable.
This is particularly 1likely to be true if the require-
ments and _design levels of the system being enhanced
demand skilled "thinking in application doralns widely
separate from fprogramming.

But we know that maintenance and enhancement pay tend
to cccur under circumstances under which the original
teams that performed _the high level logic _analysi& ard
design (and which tsed speC1al.afpllcatlon dorain skills
remcte from programming skills have long since
distanded, _leaving mainténance and enhancement tasks tc
those unskilled 1in the higher 1logic 1levels of tie

69

PR

2,
Ad et

Anddnd

1
. I

IAA'A_‘IJ P

. N

T
-"-‘ O

T T Y Y YTy

PO Y

T T W T PN T T TN y———— T ——————
Pl e TN . . - - « .

system. Such maintenance circumstances are unpropiticus
uhless technigques can be found to determin:g when to call
in er recongrfegate teans of skilled specialists needed
for fault detection, repair, cr enhancement. [Ref. 7]

Thus, to summarize, a 1aintenance programmer must be a
highly-skilled individual with the foilowing gualities:

1. Skilled in the programming language used 1in the
activity and well~versed irn obscure features whose
use ty develorment personnel mnay hide subtle errcrs.

2. Knowledgeable in the function of the system and atle
tc detect errors in logic.

3. Possess the keen, incisive mind of a detective who
enjoys the «challenge of sifting through obscure
clues.

4. Possess all the skills reguired in software develop-
pent, includipg those cf the reguirements arnalyste,
system designers and technical writers (to update the
documentation).

5. Be determined and optimistic.

6. Have a keen awareness of human psycholegy in crder to
understand tlte logic of the original develciment

Frogramnmer.
Unfortunately, the maintenance programaer rarely
embodies all these qualities. Normally, he or she is rela-

tively inexperienced and new at the organizaticn.
Programners were often started out in software maintenance
to train them for the "real job" of software develorment. A
programmer is thrust into working on o0ld software systems
running on obsolete equipment and manajed in a crisis mode.
The novice programmer learns tc patch systems "to keep then
ranning"”, gaining little job satisfaction and rarely seeing
a jor well done and ccmpleted as his counterpart in develog-
ment would. As patches accumulate upon patches, the systen

gradually deteriorates.

70

. N . e

. JORN

PSS |

. %

A

A reasor tanat scifitware nainteranc2 has become the hcme
of the 1inexperienced ani the 1ineifective lies irn the poor
connctation of the term ‘'maintenaaca". The proltler of
managemert percepticn and Le status of nairterance
Ferscnnel was a seriocus point of discussion 1in the sessior
cn Management of Scftware Mairntenance at the Scftware
Maintenance Workshop, keld at the Naval Postgraduate Sctocl,
Monterey, California, December 6-8, 1983. Mainterance irn
the physical sense inrplies sinply repairing the structure
without making any real changes, something akin to scragping
the rust off a bridge. That is hardly the case in software
maintenance. It has been shown that software mainterarnce is
largely designing ard implementing user-requested enhance-
ments, an activity very similar to system develcpment
although lacking the advantages of a dedicated and trained
develorment staff. The correction of failures, the
“scraping off the rust"™, 1is only a small part of the total
software raintenance picture. Software maintenance is a
higily demanding and vital function, fully deserving of
management recogniticn. Management must take steps to
recognize the importarce of software maintenance and enhance
the status of the maintenance programmer.

Scme psychological testing would seem to be approgpriate
to test the individual for scme or all of these beneficial
cr hindering traits. Schneiderman highlights some of the
tests in use, but also notes that our understanding of ttew
is shallcw [Ref. 34: pp. 57 - 62). Some of the tests avail-
able include:

e Myers-Priggs Tyre Indicator (#BTI) whkich jives insight
inte the rperscrality dimensions of the r[rogrammer of
extroversion/introversion, sersing/intuiticr,
thinkirng/feeling, Jjudging/perception. The interac-
ticrs of these pairings of traits is more aimportarnt
than the preference itself.

M

P P PR -~ L. WP, ST . e S T L L S S =

_W L,

Y

PSS, ¢

B o S A S A T SR i S i AN i S Sl Al e A AR A St o P

e Minnesota Multiphasic Personality Inventory (MMFI)
which 1is used to determine information altout the

person's desire to please, honesty and candor.

e Strong Vocatiopal Interest Blank (SVIB) which nmatches
the individual's likes and dislikes with other menkers

of specific prcfessions.

e Ccmputer Programming Aptitude Battery (CPAB) tests
vertal meaning, mathematical reasoning, letter sense,

number ability, and diagramming skill.

s 3erger Test of Programming Proficiency (BTICEP) is
designed to measure an individual's knowledge ani
proficiency in the rasic principles and technigues of
programming [Ref. 34: p. 61].

Validaticn and imprcvement of these and other tests are
still reeded.

The development and availability of personnel with the
fproper skills 1is nc small natter. All personnel are
confronted with the problem of maintaining currency in a
rapidly changing techrology. In the data processing ccmmu-
nity in general demand exceeds supply, but withir the
Cepartmert of Defense the problem has added dimensions
[ef. 31] that arise f£from the three areas where the
personnel may be drawn, namely: the military, civil service

or ccntractors.
1. Military

The service pclicy of rotating officers every two to
three years reduces and disrupts the supply of qualified
personnel, This is exacerbated Ly the Army and Navy pclicy
of also rotating thcse officers trained in data processing
into and out of assignments far removed from the comfputer
field.

W NOOWen. Te

,J!U_A.-

I JEPI

Cn the enlisted side the problems are intensiiiel
due to lucrative employnernt opportunities within irdustzry.
Cnce an individual is trained, the prospects of high-paying
jobs cn the outside are very good. A U. S. Air Force study
[Bef. 35: pp. 1-5] revealed that the second term retertiorn
rate2 1is only about 50% for certain conputer rescurce
skills.

2. Civil Service

Although tne Joint =service report [Ref. 31] is
directed at the entire 1life «cycle of embedded <compater
systems, the problem ¢f availability of skilled personnel is
still the same for ccmputer software maintenance in general.
For the civil service work force, maintenance persornrel must
stay current in a number of <closely related fields,
ircluding computer science and engineering, but the means to

do so may be thwarted ky government employment regulaticas.

.+-+.The personnel froblem is exacerbated by the limita-
tion_of most entry level and middle teghnlcal/management
civil service ©positions to the Engineering _ (GS-800)
series 1ir _the Ccmmands that _acgulire ECS™ [emkedded
comzuter software]. This _ecxcludes computer science a.i.
othér related dedree fields from pursuirnj careers
shlftlng to careers involving ECS acg4ui3ition.
should Fe noted that Civil SerVvice reyulations current
prchitit advertising, a position as” interdisciplina
when one of the disCiplines is a "Proressional™ seri
(as 1s the GS-800 Engineering Series). [Ref. 31: p. 2

11

[

WD H b=
s {nNs

From another report on maintenance in the cormercial
sector, LlLientz gives a figure of 20-30% shortage paticrallvy
cf systems personnel [Ref. 36: p. 9]). lientz suggests that
users may have to fill in this gap between the supply and
demand of programming personnel, but that can only happen if

aivanced software tools, such as rourth generaticn

2) secord term retention refers to an individual making
a second okligation to military service after the completiorn
of the rirst term of enlistment normally 4-6 years.

73

L S

. . PR
A v
PO PO S Y

f
4_._'4_“.

.A' -—J;l‘

. 1
9., 9

<
<

S TTTTTTTTTT—" v Caadi et Sl ' L A AN Rl R A A

languages, are available to simplify the task. Tools are

discussed in the next chapter.

3. Contractors

Tbke problems with military and civil service lator
cften forces a heavy reliance on contractors. This degpen-

dency on contractors has probleas of its own.

e The contract performance must sStiil be monitcred by

scoecne knowledgeable in the field.

e (Ccntractor perscnnel must be traired 1in the systern.
This may become counter-rroductive as turnovers witizisn
the contractor's organization occur over which the mili-
tary manager has no contrcl or when a contract 1is rot

renewed.

e The required competition for renewal of a contract and
pessible loss to another firm drains the «ccrpcrate
kncwledge regardirg the systen.

e The use of contracted software <creates long learning
curves when training persconel to maintain any srecific
system.

C. PEFSCNNEL ATTRIBUTES

The specific interdependert verscnnel attritites
required for the maintenance prograamer go a long way tcs:ci
formingy the maintenance programmer in somewiat the sime 1 -
as a “evelopment programmer, but with 2 tuist. Ps nas
discuzsed earlier, tte familiarity wita the application, .«
language and the hardware environment are still imrortant,
kut in the case c¢f the maintenance prograammer fcr a
different underlying reason. The maintainer is often called

upon to fix a system in a crisis mode or try to deal with a

74

P TR Frarerarer

connmell s e s PRTTRT Y. Yt WY P, dmatlR teenlontn s it B A

W

.

—dl

system that has little if any documentation. Ar ideal would

Fe tc Lave the rrogrammer Or Jjust someone who particirpatel
in the design, available to respond whern the docuzentation
is inadeguate (if there is even docuaentation at all). As
can ke seer, the maintenance fprogramamer is a Jdiffereat kind
of programmer with different Zroductivity measures thar can
ke advocated on the development side where the programming
teanm approach 1is to produce '"egoless" progranning frer a
democratic group apprcacih of a joint eifort [Ref. 37]. This

F=

encourages the exchance of 1deas and reduces the cwnershirv
cf rrcgrars.

Glass suggests that the maintenance projramrer will
always remain the bastion cf the individual wecerker
[Ref. 231. The ipdividual certainly must respond to any
number of applications with a dJdetective's curiosity tc £ind
clues to the prcblem where they are not readily availacle,
In mainternance work there is much more of an interface wita
the user «creating icmediate <feedback and <frequent rewards
when the wusers are happy. Martin and McClure «carry this
further saying there is a place for the team approach still
in maintenance prograrming [Ref. 25: pp. 429-435]. This
approcach can help the traininy of maintenance prograurmers as
well as exchange of ideas on the various applications for
which the group 1is responsible. A complement to the tean
approach 1is presented in [Ref. 38], and suggests that
suprcrt rersonnel such as a litrarian to moritor and rain-
tain the documentation and a archivist to monitor and rain-
tain file wupdates are needed. The "egoless" attitude of
getting the ogpinion c¢f another programmer on a frrchblem or
thhe inplementation of a change should help to produce zore
error-free progranminj as well as being a good learning
tool. One drawback still may be the size of the maintenance
organization. A very small maintenance shop may not have as
many ofirions availalkle to draw on though the attitude could
still be there.

75

‘!LLA‘L‘ «_._!L' A!Lll-"""

ad

. '_J.L_“

Do A MAINTENANCE PRCGRAMMER PERSONALITY PROFILE

The result of all of the guestions of the organizaticn
of the perscnnel, and who is available to do what, may leave
hanging the identity of the 1individual involved in this
activity. From the many references, it would seem that this
individual must have good sound judgement, vast experience
and techpnical exrperticse, the ability to identify the needs
of the user, great understanding of existing software and
technical versatility. But, why is tuis oaulti-talented
irdividual made to be the inferior to the develcrment
rrogrammer? The exact reasons don't need to be defined, Lut
the concept has grown through a process of evolution fartly
as a result of the definition of the term "maintenance"
Frogyrammer discussed in Chapter II.

Bronstein and Okamoto propose that there really are
separate types of individuals that should be workirg in the
deveiorment and maintenance areas [Ref. 39]. This break is
to be on the balance between an individual®s "comnunication
styles". from [Ref. 39] Figure 6.1 shows the four different
psychic functions that combine to produce profiles cf indi-
vidual*s attitudes, assumptions and reactions that make cne
more agppropriate for different types of jobs. A definition
of the terms from Figure 6.1 are:

e Analyzer {thirker) places hijh value on facts and
figures and is good on judging relationships of

things; wants to be in control of work.

e Affiliator (feeler) places high value on personal
relationships; is flexible and thought of as a
sygporter.

e Activator (senscr) places high value on the here and

now; is assertive; and therefore, supports tinme

constraints.

76

PP S, S

AN 8. 3 A4 des

(a' 4 A ¢t AW L 3t # s s s SR . e & x"a x

e Concertualizer ({intuitor) places a high value on

kncwirg the nature of things in teras of their cverall

sigrnificance.

The level of each of these four functions nay ke gues-
tioned in relatiornshiy to the splits giver in Figure £.1 ,
Lut there still points to the realization that accorlirng to
cre's ccamuzication style, a programmer Day le more suited
for the mainteénance environment as opgosed to the develcyp-
ment environment. Tirding the individuals who are motivated
ar.é test suited for this tyre cf work will aid the zmaia jer
in having ccmpetent ard productive employees.

The dJdetailel exazple giver at the ejinniny ¢ this
chapter applies to the military tactical side of fregram-
ming, but the variety of froblems that any mainterarnce
programzer will Lave to face will also cover the whLole gamut
of activities of that specific orgarnization. Ancther
exacrple may Dbe that of a space surveillance organizatiorn
which could inovolve the fields of orbital and spice ghysics,
high level rathematics, intelligence processingy, ccmnunica-
tions, etc. as well as data processing; a supply organiza-
tion could involve 1inventory control, budgetiny and
financial maragement, accounting, purchasing, etc. along
with data processing.

Scme solutions can be seen in both getting better fpeofle
in these fositions as well as giving them better tocols,
envircnment and prestige in the work place.

E. CEGANIZATIOR

There has long been a discussion of the organizaticn of
the personnel irvolved in the various prograaminy activi-
ties. This is as shcwn in the 1972 discussion in [Ref. 40)
of whether to have a separate programming organizaticn

devoted to maintenance entirely separate from the group

71

ST, w, ..

.

A it d PR g, b e e n A iate RAuiL Sne bt e SEnth Minded

-

AN-A1a yzer

~ .
AF-Athlator AC ce] /
AC-Acrvater .
CO-Conceptualzer |

A salesperson must be able to communicate effectively in all stvles. His
stvle profile might look like this.

L / \ ad

/ AC/ } [
S co / AC /
\A\C CC”/ .

_—/

Systems Analys! Designer Coager

People good at various phases of programming might have profiles like

these.
AF
AN
CO’
ac/
\\\Z_’////

An effective and satisfied maintenance programmer often has this commu-
nication stvle profile.

Figure 6.1 Comsunication Styles.

78

PRI Wl TR TN V. S -

T 2.4 s 7 — L

PR, PR

@ S

e al®

T T

devoted to the develcpment fprcecess. The skills needel in
Loth these areas prcvide no definitive justification for
either approach. ¥hen the same group of programasers 1is
involved 1in both tle design and maintenance of systess,
there is a lot of cicss training going on whaicn will make
anr change e€asier to implemert,

Cn the one hand, current research into some solutions to
the 'Software Crisis' [Ref. 3, 11, 33] has concentrated in
finding ltetter ways tc accomplish and manage the develorxzent
Frocess. Methodolcgies such as Software Zzeguirenments
Engineering Methodclogy (SREM) developed for the U.S. Aray's
Ballistic Missile program [Ref. 41] and Systems 2Analysis and
Cesignr Technigue (SALT)3 [Ref. 42] are comparatively new in
this area and have aided in providing an orderly apgproach to
the develorment process. These methodoliogies of SERENM, SalT,
ani others combine 1methods ard tools with human factors to
aid in acccmplishing the development [fprocess, such as to
decompcse the software into modules, provide a grarltical
notation and control guideiines, sowetime with the aid of
conputer soiftware system [Ref. U43]. On the other hand very
little of this has been done in the maintenance arena. This

area is c¢cnly now getting the attention it deserves.

3S5ADT is a trademark of Softech, Inc.

75

-7 AT

-~ T 8T

Pyl et o NAL Ay 0 T Y A AL e At Wi RN S AR Ol M "R A A AR A YA T T T

A. IRTECDUCTION

The resource of rersonnel is a dominant £factcr influ-
_i . encing scftware evclution. In the face of personnel demand
outstriping sugply, the software maintenance manager must
obtair the maximun Lenefit from available resources. A
means of achieving this is through the integration ci soft-
s wase tocls into the rmaintenance effort. A software tccl is
an automated program or process that enhances or reglaces
hunan effort. 1In Chapter III, Figyure 2.1, it is poirnted cut
that the bulk of a maintenance programmer's time (nearly
50%) 1s spent in trying to understand the existing software
system. Thus, tools that can aid the programmer in under-
standirg software shculd be addressed first by the software
maintenance manager. Testing to maintain the integrity of
the system is also a large part of this process, which can
ailso be aided through tke use of automated tools. The
following discussion relates the availability and use of
tonls for the mainterance envirconment where it can imrrove
Erogrammer rroductivity.

B. SYSTEM VIEW

A mcre thorough view of the relationship between these
activities and the tccls available is in order, while still
coasidering the [personnel issues addressed in the last
cnapter. The tools addressed here are for the &most part
automated tools. While most of these tools discussed were
crezated for the dcvelcpmont environment rather than zainte-
naice, they are still very applicable to the mairtenarce
pragramusing function. A DoD report [Ref. 31: p- A-39)

80

{4
|

|
K
H

v

v

O

Dl o020

purports that in a tctal view of the system, there can Le a
dramatic impact on software problems achieved through
support tools having five brcad objectives. These crjec-

tives are:

1. Intedgratio

4

This is desiqgned to —crrovide an interface witnh the entire

environment viewed as cooperating functioas.
2. Sugport

Ti.is rrings the entire life «cycle of the soitware tcgetter
€specially implementirg and validating tue charngjes after a
svster 1< designated operatiornal.

-

3. Standardizaticn

In this rapidly expandinyg world of computers, standards are
designed for ease of transportation across a number of Lost

Erocessors.

4. Support of Standard languages

Within DcD or any specific organization tae designated stac-
dard lancuages must e supported by tools. In other words,
completely language and machine portable supocrt tccls are

not required.

5. Flexibility and Maintainakbility

— e =

The tool itself must also Le flexible and wmairtainatle
withipn tlre environmert to ease the evolutionary changes.
C. 1TcoLs

Scftware tools must therefore match the organization
within which they are to be found. This is a broad state-

pent addressing the large variety of sizes of data

81

. I YA A i A AR

processicg

crjarnizaticns that can ke fournd eve
authors' cwr experierce withir DoD. Cre ra:
with software writter in assernkler lanjuages
hardware all the way up to systems previded il
languages using state-of-the-art haréware
techkrclogies.

To avoid overly emphasizing either end of ti
the authcrs are presenting scme broad views o
pmay be thelpful avoiding too much detail at e
this spectrum. The availability of some specif.
may meet the needs cf a specifiic environzent
ty type and vendor in a table in {Ref. 25: ©pp.
in [Ref. 4: pp. 4-2 - 4-10]. A more current
the type and availalility of tools amay be
numerous trade jourmnals, a preferred source in
changing cconputer world. A list of sources ti
found in appendix A. A comprehensive list oI s
would nct te feasible nor desirable, as it wou
cbsolete.

These tools though can help deal with pas
styles. Tkis is not a criticism of past pra
understanding of some of the problems facing t.
today. These include froam [Ref. 39] :

e Maintaining programs written without stan
e Lack cf documentation and source.

* Different computers and languages.

D. TYEES CF TOOLS

Candidate areas for types of automated

specific organizaticn are suggested in the
[Ref. 31)], and the Martin and McClure book [Ref

may le cateyorized as:

A "

1. Scftware dJdocurentatior, such as structure charts
Zlowcharts and cross-referencing.

Testing and derujging tcols.

[9]
N

[9V)

Scftware laibraries.

High order languagyes (ECL).

Configuration management.

Data tase managerent systeams.

DI AN *) I =
.

Management infcrmation systems.

3. Analysis tools, such as sirulation and diagncsti
aids.

A rule of thumk for the manager may bte to step throug
this list of types of toocls that may be available and may &
applicable to the specific organization. Certain old hard
ware configurations may have few choices of actual tool
that are available. In the same 1light, o0ld ofperatin
systems or software languages may not be supported in scrt
areas. In any case items 1 to 4 can aid specifically i
improving the mainterance programper's understanding cf th
€xisting systen.

The wide variaticns in specific functions that ray als
ke addressed are shcwn in Table X from the National Burea
of Standards Special Publication 500-74, "Features o
Software Development Tools" reproduced in [Ref. 44)
Suggesticns for the development of new advanced tools tha
may overcome some c¢f the fproblem areas mentioned ar
rresented in [Ref. 6].

Table XI from [Ref. 25: p. U411] is presented tc show
relationship between the types of tools available and th
quality characteristics of the software. An emphasis withi
the osganization for specific areas of improvements wil
force a manager to actively seek out one or more tyges o
tools. Some examples of these types of commercially avail
able tocls are:

e static analyzer - Amdahl*s MAP

83

T T T

7v

Transformation Static Apalysis Dynamic analvsis
Editing, Auditing Assertion Checxking
Format 1n% . Comparison Constraint
InstrumentatiQn Complexity Evaluation
Ortimization Measurenent Coverage Analysis
Eestructuring Completeness Kesource
Translation Checking Utilization
Consistency Simulation
Checking™ Symbolic
Cost Estimation .Execution
Cross Reference Timing
Data Flow Traciang
Analysis rfuning

TABLE X
Tocl Punction Taxonomy

Error Checkin .
Interface Analysis
Management .
Resource ZIZIstimation
Scanning

Scheduling)
Statistical Analysis
Structure Checking
Tracking .

Type Analysis

Units Analysis

structure checker - TRWY's COJOF AODITOR

crcss reference listers - TRW's DEPCHT, DPNDCY ani

FREF

automatic Joc renter - General Research Corp.'s RXVE
automatic flowcharter - TRW's FLOWGEN

structuring enginf - Catalyst Corp.'s COBOL Engine

executive and performance monitor - TRW's PPE

84

b s . LS Y S Sy ST ST AT G U S N S S T PP, S W WA AT Vi AP - P a > a

R |

AWL

a2 a2 Wi

i

SRS . JORE N, K. R

id" L

e,

TABLE XI
Software Quality Measurement Tools

Cuality Characteristic Measurement Tool

1. Understandability* Structure checker
Autonatic flowcharter
Execution path_tracers
Automatic Complexity analyzer

Z. Reliability Execution path tracer
Automatic complexity analyzer

3. Testability* Automatic flowcharter
Execution path_tracer
Automatic Conplexity analyzer

4. Mcdifiability#* Automatic complexity analyzer
5. Portability Standard-language-version
compiler

Structure checker

6. Efficiency Structure checker
Performance nonitor

* Defined as reguirements for maintainability

E. ENVIECNBENTS

A list of the different types of tools that may be
needed within an organmization is a good start for the
manager. The manager may then develop a list of these tocls
that are available fcr a specific environment, namely the
comnputer hardware in use, the software languages beinyg used,
the datalase systems availarle, etc. These two lists pay
not overlapr at all, and what's more, the tools that are
available may not wcrk with each othner. For this reascn,
there is developing a strong emphasis on making availakle an
environment that includes the tcols needed for the computer
language in use and ccmpatibility with a variety c¢f Lardware

manufactcirers. Twc environments under development are

KN

i L

specified here with =scme proklem areas discussed. Ore 1is

termed ‘'ZFrogram Manager' and the other is tied to the 20D

~
e aia

language Ada.

RN AELS aput A iE SN S g b cendEmn oo
e .

Cne cf the greatest problems within DoD is the use cf

r cbsolete hardware for which Lo tools exist. The guestion
ir_ then keccmes whether it is cost effective to retrofit the
. new tccl to the old hardware or not. Unfortunately, the ;

answer is usually no, but the question must be answered on a
. case-Lty-case basis.

1. Erogramming Manager

it b

Cean and McCune [Ref. 6] and others state a need for
a maintenance programning environment. A prograrming
panager could be an integrated tool that would help imfrove
the progran development and maintenance process Lty ensurirng ‘
the systematic application of managerial and technical Ffpoli- 1
cies and methodologies. There are three particular prchbler '

areas. : i

a. Standards and Policy

I NP I

Management policies and standards are desigred

to promote quality and reliability of the software as well

<4
as minimize the retraining required. Unfortunately, the g
volume and complexity of the standards and policy are such i
that they are often ignored. Policy should be clear, direct)
and krief. Standards should be logically orjarnized, indexed
and useakle.

o :J'A

E. Systems letails

As a programmer ic working on a large system, a
lot of time is spent learning how the system works. The

Frogrammer learns the minute details of how the system works

.‘AA{_4 ¢ r -

through the process cf modifying and debugging, tut tkhen

fromptly forgets this detail as work goes on into ancther

86

LISISLINY . J

,J' [

Froject. The u1sual methods cf recording informaticn 1in 1
manuals, reports and nmemos is often not appropriate for this

low level of information yet it is still vitally imporcant

ekl d

to the maintenance function.
c. Programmirg Environment

Yost programming environments have a number of

inlillas

tools available for use. Some of these are absolutely
necessary and familiar +to the programamer, such as editors 1
and conmnrilers. A variety of other tools may be available,
but not well-known to the programmers. Manuals and on-lirne

iR e

documentation prcovide very little help 1in this case since
the programmer must explicitly request the tool. If the]
rrogrammer has forgotten or doesn't know about +them, they

will remain unused. .

2. Ada Programming Support Environment

Booch describes in [Ref. 33] the specific envircn-

ment being developed for the new DoD language, Ada. This

environment is referred to as the Ada Programming Support
Environment (APSE). The Ada lanjuage and environment now
teing developed within the DoD is required for embedded
computer systems only, thus far. (In the non-embelded
systems there still is a need for some sort of program envi-

P

ronment unless Ada becomes workable for both.)

The Ada Programming Support Ervironment seeks to
support the system through its whole 1life cycle with the
expectations from [Ref. 45] of:

e reducing compiler develofment costs

reduced tool development costs

e imrrove software portability]

e improve programmer portability

87

P T Y YA

YY ¥ v

-

P T

- P TR L ae—— Dl S i M v S AN i T A A e S Aaniein e - iine SAvin ke —Rin)

U ser intertace

e /-"_\\
/’4;3/,/ ‘:::Q;

/ \\\\ Lser- \llppllLd

tools

Command
interpreter

operating
system

tool>

/!
manm.,u \ Edltnr
\‘\

APst

Figure 7.1 The Ada Programming Support Environment.

The architecture orf the Ada Progyrimaing Sufpert
Environuent is shown in Figure 7.1 <froa [Ref. 4€]. The
central gecint of control is provided for the project zanager
thirough the program data base. The data tase paysically
exists at the inner level of the «¢nvirornzert in the Hest

Operating systen.

88

R T P T S S

ouh A e o

a. KAPSE

The Kernel Ada Programming Support Envirchnaent

(KAPSF) is the next level which provides the 1logical to
physical mapping for the APSE. This provides the nmost
elementary reguirements for run-time support. This sugpert
of the logical/physical mapping is the needed portakility
for the rrogram. Thecretically then, the KAESE would ke the
cnly imrlementation-dependent change needed for rehestirg an

environnment.
k. MAPSE

Above the KAPSE is the Minimal Ada Programming
Support Environment (MAPSZ) which contains a minimal set of
tools for rrogram development, and, of course, maintenance.
As defined by STONEMAN [Ref. 47), the MAPSE contains
suggested tools such as:

e text editor

e rretty printer (code formater)
e ccrpiler

e linpker

e set-use static aralyzer

e dyramic analysis tools

e terminal interface routines

e file administrator

e ccrmand interpreter

e configuration manajer

89

./ _‘-_'\'-‘.-‘-_ e - e . S M. SO b S P L L Y W L UL T W

N .

itnd @

3

. JVEIRPLIus |~

v

. e
N

POt Aam I et i At Mt At it - A et SRl B A S A N NI 0 Y S AERL AR A4 G AL SA e A lec R B ——

~

C. APSE

The highest level and broadest view is the AFSE
itself. This includes a set of advanced tools to support
all prhases of the life cycle. Again STCNEMAN [Ref. 47] does
not srecify specific tools, but does reguire tools fcr:

e creation of data base objects

modification

e analysis

e transformation
e display

e execution

e maintenance {erphasis addedq)

F. USE CF TOOLS AND STANDARDS

The final questicn to the manager regarding the use of
tools and standards within a specific organizaticr is hcw
they may be integrated to manage the function c¢f mainte-
nance. Gilb presents a possible way to organize these tocls
[Ref. 48]. He addresses one individual project, but the
authors feel that the manager may use this system to eval-
vate a specific rroject or the orgamnization as a whcle. The
Frocess goes through a series of tables that are desiganed to
determine what new tcols (referred to as ‘technigues) that
the marager should actively seek out. Gilk steps througt a
simple project to demcnstrate a manager's process cf evalua-
tion o0f one's objectives, priorities (referred tc as
qiotas), and technigues already available within the organi-
zation. <Some calculations betweesn the organization's pricr-
ities and currently available tools Jdemonstrate areas where

the ranager might wart to actively seexk new tools.

90

|

There is one caution in this area though from the CoD

Joint Service Task Force Report [Ref. 31). No widely
accepted productivity measure exists for the various tocls
nor ccobinations of tcols. Using tools with which mainte-
nance personnel are familiar may be the most efficient
utilization of perscnnel resources because it reduces
mechanical activities and allows creative ones, but should

not e limited ¢to these when additional tools would be

useful.

A standard enmphasizes where personnel need tc be
trained. An examfple of a standards policy is can ke shcwn
within the Department of the Navy. A Navy imstruction,

SECNAVINST 5230.8, Information Processing Standards for
Computers (IPSC) Prcgram gives the overall policy informa-
tion on high order language (HOL) standards, while
attempting to avoid the proliferation c¢f local- or vendor-
unigue standards. The objective 1is to identify, develop
ard imrlement standards that will:

» Provide for the greatest degree of compatibiliiy
between non-tactical ADP systems and their associatel
data systens.

e Facilitate the development of machine independent

softvare.

e Prcvide for efficient operation and utilizaticn cf the

ADP equipment.

e Incorporate and make available for general use related
standardization efforts of individual ADP
crganizations.

e Increase reliakility and transportability of software
and facilitate tackup and/or contingency processing.

91

g
9
_“‘ *

i d O

. S |®

19

r—-—'—'v.*"wﬁwer(..‘—"[-‘~i“,(..‘F-\'..V.-.td»>‘1.--A'T"‘:"-...< L At R i S Ml i ek e i Bk i R

A more specific standard, MAPTIS® High Order language
(i0L) Standard (OPNAV P160-57-84) [Ref. 49)], while reccy-
(4 nizing the wide variety of unigyue problems to ke faced
within an organizaticr as large as the Navy, furthsr sets

agproval/ncnapproval status for the 4APTIS prograr or the

use of scftware languages. The latest language tools are
divided into fourth generaticn lanjuages, non-gprocedural

H

languages and query/retrieval 1languages. An exangle ‘o
cirrently available data management languages is saown in
Table XII from this standard. (This table is not intended
t> be a comprehensive list.) According to this standard

[Ref. 49: p. 4], it is not intended to discourage the use of
languages other than the already approved COBOL, FORTRAN,
EASIC and Ada. Instead, it should force c¢ommands to demcn-

strate tle cost effectiveness of a aew lanquage in the
snecific situation ard to provide higher level autaority
with information abcut what and where languages are keing

used and to provide information for evaluatiag sirgidar

languages.
1
t_0
3
|
®
1
L
|
Y —_—
} _MMAPTIS 1is an acronym £cr Manpower, Personnel and
° T-ainipg Information Systems.

92

o
L
»
.
PP U RS Y W e B B P S o M A e R C a0 A T i S T T T T e PR

L.

LA I WA PACAEM Wi Dt T Ta

— e -

—————

51 310339 3uauwdoyaasp IT)

YY)
Nt O
<

~

ZzZ>=

> ZoeT

QAT <t gl oLt 4T
mm
€303
NN
E3E 2
oo unikin
OO
AN

i
NN\
nvie

SALVIS SWe

L E el
HOO T

E4rC

%

sS3onpoxd wOT3IRUWU3IRY

SI2pTING YOTIEMIOINT

AQOMHH e OinQ
HHEE AQAQUIO <

NN BT

al

* (sujuow-I13¥I0M 9 ueyy 12308106
IaATeM s21Tnbaax ¢asn 107 roaaoidde 304 - N
*IDATEM 1NOYITM &SN 303 w@>0um 'l

44
[l
o]

D -

A

9% 3 INM3ICS
32UTTIND :Uumm\wzﬂa<
moOJUTH

QWA
"R
L Jal Yol

[uﬂ:
E4
b

:sabenbue] :10T3PIDUAY

Fe)
3]
=
O

je

(o]

-
4
<3131

vl
< O DO

CHAeZ ORI E (B4 40 164N
O

10010

A11adg
nouag

[T $) 917} 3
2y Ozt
[k 24

:ssbenbueq TRI

~H g
Q
=
O
-

mMmEs M

n
otydosued A3
Y 2JeM3130G +LdIxs
4310y a1o®P1) s
FaI
RLsk | a

el OO o

Hay¥

4

WODUTD IA
WODUT)
mooNT)
IUTTIND
3IBUTTTIND

rsabenfueT TeadtiiagsLiand

TOdNG A JOVNONYT

Pt et 124
1) =g
=
T)
TS A L
00y bt <t

(=717}

3
b
il
QUL 40 Qarmtitnagay

sabenbueT jusamabeuey e3vq paaoxddeuoy pue paaoxddy

IIX 4719V

93

IR PR OIS A A S o

|
:
t.
L,;h o

VIII. DATA EVOLUTION

A. DATA AS A TOOL

The area of data usagje has two separate implications for
software maintenance. First, there 1is the guestion c¢f how
the separation of the data from the application rrecran
eZfects the function of those assigned to "maintain®" or
inprcve, keep up~to-date, etc. the software syster. The
second irplication lies within the research and develofpment
o the software tool called a data base management systen
(DB¥S). Marny tools and methods are being develored that can
aid in the process and management of the software nainte-
nance function. This can be just one of thenm.

In this day and age of the computer, most organizations
are beginnirg to realize that no matter what the function cf
the organization (anything frcem product manuiictiring to
service-oriented financing),the informatior =needed at all
levels 1is an important resource. This has created the
distirction between data and information. There is much raw
data availakle, but information is that data which is jut
irto a useable, correct, relevant and manageable fora. Raw
data is useless until it is formatted and made availakble.

Correct and relevant information is needed at all levels.

It becomes Jjust as irportant for thne supervisor in a bank
operaticr to know the status of the transactions as it is
for the tank president to know the cost and economies of the
operations of the total organization.

The format of this information might Lbe in any form froa
a logically organized file drawer to a computer syster with
automatic or guery-driven, retrievable information. with

more and more data leing processed by any organizaticr ard

Su

i B N » ot s - o Bl B i B M oD B Boe B oahoae imnd oA S o B ot e omloa tala .

¥

'

L i R

LR adh e J

C QAL S vl aeus s st auet gy

ccmpueter hardware techkrology costing less and less, the only
cost effective wav to process Jata of a very sizeatle
amount, 1s to jprocess it on the computer. Trhis pay rmean
using ccrputers from very large mainframes to B1CLC frcces-
sors or any combinaticns in between. There will not ke too
muck distinction betiween the size of these computer systers
Fiaced Lere, since the same principles sti’l apply, though
scmetimes to a lesser degree. The decision making gfrccess
regquires accurate ané timely inforamation. 1In the opinicr of
tte authors it is becoming increasingly apparent then that
tte ipdividual who ccntrols the information 1s in control of
the organization. Thus, e as a society are rapidly rcvirng

from the Industrial Ace.

B. USE CF DATA BASE MANAGEMENT SYSTEMNS

The need then to ranage and control this Jdata separately
arnd effectively within an organization has created a data
tase environment. Tke DBMS itself can effect the success of
tte tctal rpackage of maintenance tools. As DJoralkcc and
Swearingen state: "....database is an essential reguirement
fcr configuration management and for using automated tocls
tc maintain software" [Ref. 4: p. 5-2]. It provides a
ccnvienient means of storing test cases, providing error
history and statistics, and <cataloguing the detail fprogran
characteristics. Tre data base environment has alsc Lelgped
to get a handle on reducing some of the long-tera mainte-
nance problems and ccsts.

The data base ervironment has not always existed. Tt
has grewn from the recognition of the problems witl. the
ranagement of data. Analysis had shown that 3ata should be
handled separately from the functions that the scftware nust
perform. Today there exist many levels of tnis separation

of data from functions in the various computer envircrments.

95

AD-A152 835 MANAGEMENT ASPECTS OF SOFTWARE MAINTENANCE(CU) NAVAL
POSTGRRDURTE SCHOOL MONTEREY CA B J HENDERSON ET AL.

UNCLARSSIFIED F/G 972

LM

T]

"';, LAt i
MR e e -~ snanon 28 e 2o o
MR T 2 . .

ol L0 FE

"mlg : ’;’ﬂ"-f 22

"m% i l2e

[l

22 et yoe

MICROCOPY RESOLUTION TEST CHART
NATURSD RN AN R . s

| I AR R N A AR " Stk St I Nl S of Sl Dad et At sk Sadl Jied 2t Sl Sl il A S i S Al S Ve A A e Y ST A I s e I S

vy Yy

t-

This develcopment rerresents a change not only in software

v T vy Yy rrw
. P B

tut inp data processing management. The separation of Jata

from function thas evolved along with the other <changes in

Y

the Jdata processing field, such as hardware improvements arni

software larguages. The separation nas created the data

L4ln ame

TN

rase environment, where various prograas and groups can have
access to the same data and which, 1if properly implemented,
can aid in the maintenance functioam. Martin and dcClure

[Ref. 25) have presernted this separation as a fprogression

vy

through a series of fcur classes:
-
(

! ® Files

e Apriication Data Base
e Sulject Data Base

e Information Systenms

Martin and McClure have specified only these four
q classes cf envircrmernts, but the authors feel that a fifth
class for the distrituted data base should be added. Each
» level increases the imzplementation complexity of the systen,
E but adds toc the management capability to handle greater and

i more diverse amounts cf data. These five levels are defined
} below in a chronological order, but this is rot necessarily
[implying that there must be a chronological &rovenent
(classes I to V) of the structure of data at a specific
locaticn, tut rather, that the various combinations of these
—

envircnments can and do exist at any one time within a
single organization.

1. Class 1 Envircnment: Files

All early computer systems handled data operations
as a file systenm. Systems vere <created to accorplish a

specific functior and the data description used was eabeddeld

ccmputer hardware techrology costing less and less, the ornly
cost eifective way to process Jdata of a very sizearlble

amount, 1s to process it on the computer. This pay mean

using ccrputers from very large mainframes to micrc prcces-
sors or any combinaticns in between. There will not be too

muchk distinction between the size of these computer systers

LA

riaced Lere, since the same principies stiil apply, tlough
scmetimes to a lesser degree. The decision making precess
requires accurate and timely information. 1In the opinicrn of
tte authors it 1is becoming increasingly apparent then that %
tte individual who ccntrols the information is in control of d
the organization. Thus, we as a society are rapidly wmcving .
from the Industrial Acge.

B. USE CF DATA BASE MANAGEMENT SYSTEMS #

The need then to manage and control this data separately
ard effectively within an organization has created a data
tase environment. The DBMS itself can effect the success of
tte tctal rackage of maintenance tools. As Donakoc and !
Sweariungen state: "....database is an essential reguirement
fcr configuration management and for using automated tocls
tc maintain software" [Ref. 4: p. 5-2]. It provides a

AT

convienient means of storing test cases, providing error

history and statistics, and «cataloguing the detail program
{ characteristics. Thke data base envirormert has alsc helred k
' to get a handle on reducing some of the long-term mainte-)
- nance rrotlems and ccsts. ‘
. The data base environment has not always existed. It
: kas grcwn from the recognition of the problems with the 1
management of data. Analysis had shown that data should be
kandled separately from the functions that the scftware must

Y Vo

perform. Today there exist many levels of this separation
of data from functions in the various computer envircrments.

95

]
RS

| o T A Y . T R P e VP ST W

A Gai At Sl Wt A St A fedt Aadl- Sl g O Sr e 2a AL NSNS Auttan A R B SN AN SMI AL B S S R R T T ey AR sl e

-

within the system. 1The problem was that an organizaticn was
not static ror was (cr is) the data being processed. As

more and more systens were automated, majur procblems were

!
:

created. A high level of redundancy of the data was prora-
gating throughout these different systems, <creating diffi-
cult maintenance proltlems of data consistency and integrity.
An arrarently simple change could propagate a chain reaction
c¢f problenms. These systems became very inflexible, esge-
cially wken considering one time rejuests. File systenms
also were very expensive to maintain [Ref. 25: p. 118].
Cften tke great azcunt of money invested in existing file
systeas and the norral resistance to chanje Lave delayec the
movement to the next level of environanent. These costs are
sunk costs -thouch and should not be considered since ttey
have nc e€ffect on tke improvements or the mainterarnce of the

system. Examples of file systems are VSAY and R¥S.

2. Class II Enviropment: Application Data 3ase

The problems of the data changing while tke furction
stayed tle same «created the need for a data base system to
help manage and separate the data changes. The "data tase"
term is used in many forms of literature, but it is cften
only the currently pcpular term for a file systen. A good
definiticn from Martin and McClure is

a shared «collection of interrelated data desigred
€t _the needs cf multiple types of end users. It
e defined as a c¢ollection Of data _from which many
rent end user views can be derived [Ref. 25: p.

-’wr. e ‘
-0 r
ath B

o
a
i
1

e MHrrde

n
£
7

In any case the key is the storage independence c¢f

haa 2R N sunonn ot

¢ the data from the applicaticn programs plus the different

WL U

logical views allowed of the data. Any modification of only
the data then can be controlled independently. The class II

€nvironment was created Juite naturally from the

97

-
DTSV | R

P
SN PO

Ty

Frocess-oriented desicn. Systems each started using a data

rase, kut each application created its own data base. This
was e€asier to inmplement than the next 1level, Lut also
continued almost all the same froblems as class I environ-
ment with a high redundancy of data that would continue to
rroliferate as rew furctions were added. Imn additicn tc the
high ccst c¢f buying this DBMS package, there would ke the
continuing kigh cost cf maintaining the data. This pcinted
up the necessity for a Lata Administrator (PA) or Lata Base
Administrator (CBA) to aid in the placnirg ard ccrtrel of
this crganizational resource. Some examples of the ccnmer-
cial rpackages are TCTAL by Cincom and 1IDK5 by Cullinet,
which originrally came out in the early 1970's. The fpackages
purchased for use in this environment could also be the same
ones as those purchased for use in the next class 1III

€environment.

3. Class III EZnvironment: Subject Data Pases

In this envircnment there is an actual design of the
data structure done independently of the functions that must
ke carried out through the programaing systeas. Although
this is the second ervironment to use data bases, it is the
first to actually help reduce maintenance costs. An cver-
head is the initial time reguired to do the analysis ani
modeling of the data requirements, but this can reduce the
time and cost later cn in both the Jdevelopment and mainte-
nance cf application systems and their interaction thrcugh a
single data base. This environment not only requires a
change in the traditional analysis methods, but alsc in the
trajiticnal overall data processing management. Ideally,
there would be active use of some sort of DBA to mairtain
planninjy and operaticpal control of the data, but there must
also te upper management support for this change in orgari-
zation. If that is nct done, an energetically started class

98

e . m mm—— e -

et A m ma

£ S A A mEEmE . It _J. sEEEmA .-

* MR s

[E TR

N Aa r

PR ol S |

L_A‘A_J_ VY U VR

) BN B T A v e Aol b te diAe e At n A AN A0 TN T Gl N W G ad Sl v s i Aadl D

IITI envircnment can guickly degenerate into a <class II
ervircnment [Ref. 25: p. 123].

4. Class IV Epviropnment: Information Systems

This fourth class of data base is orgapized for the
purpcse of fast retrieval of informaticn rather than the
high volume producticr runs, which can work best in a fkatch
mode. Some examples of these systems might be IBM's STAIRS
or some c¢f the relational models such as SQL and NCMAD,
which alsc provide gcod gquery facilities for these user-
driven systens. These systems are not difficult tc izple-
ment and provide great flexibility for systems that reguire
fast retrevial capabilities. On the other hand, they rmay
not re efficient for systems requiring anigh volume trans-

action processing.

v,

In a case where both retrieval and production runs
are needed, trade-offs must be made between the twoe ofpesing
requirements. This may be done tharough a combination of
class 1III and «class IV data bases where data is T[assel
through an "extractor" program [Ref. 25: p. 127]. Thkis
would create two separate data ltases where each is efficient
for its specific function, but data also must ke ccntrolleld
and passed between the data kases on some schedule. This
schedule may be on one or many possible conditions: online,

DEPCTAGN | VRSP UDnE. I

offline, triggered ty an event, ad hoc or even real tire.
Careful attention &pmust be paid to ensure the integrity of

g both systems and the timing of each process. The major

problem is that if toth data bases are not locked from
[external use as updates are applied to both files sinmultane-
] ously, the data bases could both become only partially accu-
r. rate. An alternative approach migat be to maintain a single
e data tase and choose a system that was less efficiert for
: either individual fubnction, retrevial or production, tut
E adequate for both. This may be done by using &nmultigle
L]

99

PP

iR e S Wi i S RN PR S P S i Sl i sl Sttt Sadh i Andb Sl Al Sad e dE N A sndh WA SL AR S A S SRS SN APUL AL AL e S L A N Dl AU S

inlexes cr an inverted list. Only a thorough evaluaticn of
the individual situation can determine tne best trade-off.

5. Class ¥V Envircnment: Distributed Data Base

Tn this age c¢f the merging of the technologies of
computers and communications, another environment for

conputer data most definitely is the use of data distrituted

throughout a computer network. Data used at one specific
installation is handled through one or more of the classes I
through 1IV. Data can be passed as files from one comfputer
system tc another, as reeded. In the case of cn orgariza-

T SRR W

tion whose functions are distribtuted among widely sefparate
geographic locations, pieces of data are contained at these
separate sites with a need for it to be managed by a single
systean. A retwork data mamager has been proposed for this i
Fy a COLASYL committee to be another layer of their LCBilS.
Its extensicn would ke called Network Data Base Management
System (NDBHMS). This would be another type of option that
could be implemented cn the LCBMS that would manage the data ' i
resource reguested c¢n distant systems. The ma jor drawback g
for this CODASYL NCEMS is that it regquires a homogenous

e

computer systen.
Ancther and pmore well-known attempt in this direc-

tion is the System fcr Distributed Data Bases (SDD-1) by
Computer Corporation of America. This system was designed
focr the Cepartment of Defense's ARPANET. It is designed to

haadle the problems in relatiocn to a global data directory,
conflicts with possilkle deadlocks, and problems <c¢f effi-
ciency. The replication of data at different sites 1is
permitted, if it is determined that 3uplication is more
efficient than the transmission costs involved [Ref. S0].

L Either of these systems allows a choice for the
: orjanizaticn that has many types of data and a recuirement]
to access that data at Jifferent sites in Jdifferert ways. p

- 100

a
abachinbucie <ok Wia

— W,

e

— - " I - Ty - I B B I e it AN e et B S A il R et gl R S e

Th2 individual who is the network data manager for these
systems will have hkis or her hands full maintaining these

tyoes of future systers.

C. INCIVIDUAL DATA NEEDS

All organizations would not necessarily bernefit fron
moving tc higher and higher levels of data systenms. There
arz organizations whose use of the data, such as in very
high vclume transacticn processing, may even best ke served
bty f£ile systems. But when different wavs of locking at the

saze dJata are needed, the data tase system is needed. The
most frequent implementations today are combinations of
class III and class 1V, Class V may be a reality ir the
future, tut for now it is more of a concept. q

101

Y

T— ———

. — —— i —— - —— ———

A. TEE FROELENM

The maintainer's chief skill, like the surjeon's, is rot
in making desirable changes Eut™in avoiding undesireatktle
anes, {Any fool can take out an appendix; the trick is
to ta%e it dut withcut killirg the patient.) [Ref. 9:
p. ix

As has been described tke task «c¢I computer scitware
maintenance is nc easy undertaking and conseguently neitlker
is the function of the maintenance manager. A gerneral
framework for analyzing this task has keen presented tc aid
in understanding the fprocess.

The central focus of this thesis has been that software
evilves. This thesis has examined the internal and external
factors 1involved in the ability of arn organization to
respond and direct the evolutionary demands on software. 1In
an effort to help tlke software manager understand software
evoluticn, the authers have concentrated on four tcrics.
Each topic serves as an element of the paradigm of evolu-
tion, ttuilding upon the last toward the goal of contrcliing

software evolution.

e Historical Percspective: To predict software evolu-
ticn, the software manager must understand the present
and past states of the software systen. That under-
standing is gained through the collection, retention
and analysis of data about software evolution.

e The Ability to Fredict: Orce the historical ferspec-

tive is achieved, the software manager may predict how
various internal and external factors will influence

software evolution.

102

S S~ o LNt e .

-

PP —

oX

e

L T A A A Bte i i S e e Yatie S5 Sy 'Sl Y AL S Sl A S A

e The Tocus of Control: Manpower 1is the «critical
resource in sciftware evolution, and thus effcrts to
control the personnel resource will yield the nmost
sukstantial influence on software evolution. The key
to successful control of tne personnel resource 1is
through understandirg the nature of the nainterance
programmer and how this function is performed.

e The Means of Control: There are several ways to
ccntrol the influence of personnel on sof tware evolu-
ticn. The authors chose to focus on the use cf soit-
ware tools, tke enforcement of standards and the
integration of data as the means of control that would
offer the most rositive long-range benefits.

E. CCNCI1USIONS

1. Bistorical Data Collection

%hile data cften exists with which a software
manager may develop a historical perspective, that cdata is
generally unusable due to a number of deficiencies.
Fundamental concepts are not universally defined. The defi-
nition cf "software maintenance" itself 1is debated.
Coacerts such as "rrogranm complexity"™ ard “programmer
productivity™ are defined in 1larjely subjective terms and
open to interpretaticn. Even a physical quantity like
"lines cf code" cannot be consistently defined.

Pithout fundamental <concepts rigorously defined,
metrics to measure the gqualities of the software and of the
environzent cannot be established. The collection, categor-
ization and analysis cf data is virtually impossible without
a suitakle set of scftware nmetrics. The characteristic
€lements of a software system discussed in Chapter IV were
presented in a highly subjective manner, and tend to reflect

the igprecise nature cf contemporary software ametrics.

103

LT S S S S0 SN T T I LW I S I T N L S S S

Cnce a suitalkle set of software metrics for estima-

tior 1is derived, data may be coilected and analyzed +*o

estalblish the historical perspective of the software systen.

2. Predictirng Scftware Maintenance:

The state of the art of software @maintenance cost
estimaticn is hobbled by an incomplete understanding cf the
factors that influence software evolution. Despite exten-
sive research into software cost estimation, existirng devel-
oprent models yield estimates that are, at best, within 20%
of the actual cost roughly 80% of the time [Ref. 1: p. S21].
Molels designed to estimate software development costs tend
to be even more inaccurate when appiied to software mainte-
nance [Ref. 28: p. D=-16]. Thus, a software manager is
forced to employ several technigues and models when
attempting to predict future software evolution and estimate
the resources regquired to implement that evolution.

3. Eersonnel

In a final recognitior of the necessity of the main-
tenance function, managers mpust value their maintenarce
pecsonnel. This is a function that will continue to receive
more attention as tie cost of the mainternance function is
shown to be a large rercentage of the software life cycle.
The goal is to have tetter and more productive mainterarce
Fersonnel.

There are three major. areas that must not be
nejlected. These are training, incentives and career
Frogression.

e Maintenance personnel must not be neglected when new

techriques, hardware, software, etc. classss are Lsing
given. They too aust be included so they aay be

prerared to meet the demands of the future.

104

T

T Ty vy

T WW . bl il 2 M- ateat i i e U i SN AR G A Al auih SN S I e

e Incentives can come in many foraos. Training [regraass
may e an incentive to some career-ainded Zaintairners.
Adeguate envircrment (workirny spaces), the tcols and
sufport to do the job, provide a gyreat incertive and
car show the raintenance [frogrammer that he or she

reaily does cournt.

e Firnally, the «crganization must show a wvalid career
Frogression to which ore «can aspire. How car the
irndividaal reach their career jJoals witain tuat orjan-
izaticr.? The wmilitary officer has an especially acute
Frcklen if he c¢r she wants to consider a career in
data processirng in the Navy. The officers rotate irnto
and out cf tre field, creating a very Iifficult
Froblem of keeping wup with the rapidly charnging
computer technclogy. The creation oz a jata

Frocessing specialty would alleviate this zrotlem.

4. Tools

Ir the push to make use of tools in a mainterance
envircnment, the past is most definitely prologue. The
standards enforced, the tools used, the structure given in
the develormzent of the system will directly effect what can
€even te attempted in the maintenance phase. When the soft-
ware to ke maintained is an o0ld, assembler language, undocu-
mented systen, remedial steps must be t aken almcst
innediately to have the working tools needel Zor the tize
when the system bomts. These remedial steps c¢f frovidir;
current documentation on these systems can have a two-foll
tenefit. It becomes a self defense measure +o hel; avcii
disaster as well as rroviding initial training for the main-
tenance [programmers. An example of the very few *ocls
availatle for this retrofit is presented by Scnneider in
[rRef. 38].

108

LA e TN

. S SO SR Y.

9. RSN, SV

—————

L i e Shas)

v T eV ey L e e~ R nR————— b nl Sk Sad deatt i 4 I S e

The progressicn ideally would assure that the effort
in the Jdevelopment group would be toward the use cf hLigker
and higlter leveli languages with the comparable larger
nunkters of tools and eanvironments availalble. This assures,
as has been shown, that the progression to fourth generation
languages with their rackage of 1integrated tools will allow
a more elificient maintenance function in the iuture.

The one recommendation the authors make in this area

would e f£cr organizations to make better use of user's

groups tc discuss individual probleass and explore the agprli-
canility cf now scitware tcols. Specific corznrities
containing unigue irrlementatiorns, speciaiizeldl hardwacrcse,

uni jue or otsolete languages, or coabinatiorns of these woald
fe aided immeasurablly by coitact on a reguiar basis. This
interaction could take the form of phone calls, conferences,
newsletters, networking, electronic bulletin boards, =etc.
Such an interaction wculd enhance data-processing cohesive-
ness and offer a ready forum for the exchangye of grcktleas

and their socluticns.

5. Summary

A ltasic understanding cf this software evoluticn is
required for the maintenance manager to be able to antici-
pate the future; not with crisis management anrd the dread of
impending catastrophe, but with «confidence, arnticipating
where rrcblems pay arise and how to meet then. Armed with
an accurate software history, the software manager nmay
predict with accuracy future directions for the software
systen and estimate the resources reguired tc evolve 1in

those directions.

106

Pinal Sath Sl gt Sunth Bnes PR “adl el ML AR SN Satieg il et dadl Ml Ml DR Ml Sl ShalhRell e Gl Sl B S et il S te AT Sk Stk e B JNndi il Sl Shafl S Sl A A A A AR et R 'V‘-—T

APPENDIX A
TOOLlS

A. TOOL CATALOGS AND BEFERENCES

Listed Lelow are tool catalogs and references which azay

e 0f scme use. They contain information on tool avail-

ability, functions and features, sources, cost, etc. fron

[Ref. 51: p. E-1]

1. "CATAPRO Directory of Soifitware," DATAPRO Research
Corp., McGraw-Hill.

2. "sSoftware Development Tools", 5pecial Publicaticn
500-38, Raymond C. Houghton, Jr., National Bureau of
Standards, March 1982.

3. "rFederal Software Exchange Cataloyg", Federal Software

Exchange Center, General Services Administraticn,
Report No. GSA/ADTS3C~82/1, January 1982. |

4. M"FCSC Conversion Tools Survey", Federal Ccnversion
Support Center, General Services Administraticn,
Report No. GSA/FCSC-82,/001, October 1982.

5. Scftware Tool Catalog", Federal Software Testing
Center, General Services Administration, Refrort No.
FCTC-82/013, Arril 1982.

6. AUERBACH Techpology Reports, AUERBACH Puklishirg
Inc., 1982.

7. "International Directory of Software, 1980 - g1»,
CUYB Publicaticns, England, 1980.

8. "The EDP Performance Review -- Ninth Annual Survey of

Performance-Related Software Packayes", Arrlied
Ccmputer Research, Volume 9, Number 12, TLecemker
1c81.

[

[

3

:j- 107

¢

-

-

p .-

]

) |

2 . . . e .. e e
" '. . ° ". '.. ! M N ..- T . . - - .. ‘v : -‘.) '.. b '-. . '.A '-. . . .— P - -~ - - h ‘e . ._‘ .
- PO SN B A S . - R) ot el YRS o L WA S SR IO S Y o T T, S = o | P, S T . !

r-'r_ D et Saat b Bt 2 Sk S s e B A u EAA T A A e Y] Tegew Ao iaruii=atih - sl aiAN- et N o A P A SR A

9. t"Software Engineering Automated Tools Index",
Scftware Research Associates, California, 1981.
10. "Software Tools: Catalogue and Recommendations®™, 1Id

AWML

Cefense and Space Systems Group, 1979.

Aol ot

11. “NBS Software Tools Datakase", Raymond C. BHBcughtecn,
Jr. and Karen A. Oakley, NBS-IR-80-2159, ©National
Bureau of Standards, October 1980.

12. "ICP Software Directory - Data Prccessing
Management", P.O. 3Box 2850, Clinton, Iowa 52732,
13. "AIAA Computer Systems Committee Software 7Tocls

Survey", Data & Analysis Center for Software, Rcme
Air Development Center (RADC), I1S1s1, Griffiss Air
Force Base, NY 13441.

14, vSoftware Tools Survey", Federal Software Testing

. §

Center, General Services Administration, Refpcrt No.
0SD/FSTC-83/015, June 24, 1983.

B. SCFTWARE MAINTENANCE COST ESTIMATING MODELS

The purpose of this section of the appendix 1is to

UL T

briefly summarize selected software maintenance cost estima-
tion @models. A rigorous analysis or conparison of the
models will not be attempted.

RSL YBaRE

1. Software Lifecycle Model - SLIM
This model 1is available from Quantitative Software <1
Management, Inc. An automated system, SLIM operates on '

L

.4 Hewlett Packard equipment and is in use at the VNaval |
L -
E Electronic Systems Command. SLIM is derived from 1.

Futnam's Life Cycle Model as represented by the Rayleign

distrikution. (See Figure 2.3). Courses on the the use of
K SLIM are offered thrcugh the Department of Defense Computer

UL DU

\
E Institute, Washington, D.C.

- 2. Ccnstructive Cost Model - COCOMO

b 108

L gt 4

o
1

B 2eA S &
e
. .

R C e et . . . e . R . .
R A T A I D N P T N 'y PPN, . ~ " D . e Sa S

Y

C umn o8

V—v'-vva
. o, .

AW

The CCCCMO model was developed by Barry W. 3ocehm and is

tresented in jreat detail in his booxk Software Engineering

Economics, [Ref. 1]. COCOHO is easy to use with ruilercus
tables from which the estimator may readily derive the
required parametric values. The model algorithm is well-

discussed and lends itself well to automation.

‘3. The Scope of Effcrt Algorithnm

This mcdel was developed by G.S. Hoppenstand, 1I, USHN
and 1. T. Nowak [Ref. 21] at the Naval Security Grcup
Activity, Skaggs Is., California specifically for estimating
software maintenance. Their rather unique approach 1is to
analyze the conmrlexity of a given software systen, then
derive the number of "steps" reguired to complete an average
maintenance task. (This approach 1is possible largely
because the effort of studying the existing system and is
the single largest task in performing the software mainte-
nance - Figure 2.1.) Their model then predicts the numrer
of "steps" a military programmer of given experience can
conplete per year. Thus, the billet requirements =zay be
calculated for a given systen.

4. The Model for Estimating Tactical Software Mainterance
Requirements

This model was developed by W. H. Merring, III, Carpt,
USHC as a master's thesis at the Naval Postgraduate School,
Monterey, California. The Merring model [Ref. 22] ermflcys
"hebugging", a technique of seeding a program with inten-
tional errors to determine the error rate, the detectability
of errors, and the pmaintainability of the progran. This
technique is used to estimate the corrective maintenarnce
worklcad. Enhancerent maintenance i3 estizated usiny
Halstead's Effort Metric [Ref. 24) as a measure of prcgraa
conplexity. Halstead's metric has been shown to be effec-
tive at estimating maintenance «costs in unstructured code
[Ref. 4: p. 2.14].

109

[-

. 3u:;

PR PRI . - . L - P Ko " . R . PR e ® et e
P T, UL L. PP YL . S, . P R S P, S UL, S A S i, WPV PP IR W TR T Rty Tk Ty ey SPe)

LARAR AR Ak it oA

vy

10.

LIST OF REFERENCES

So¢hm, Barr ., Soft
Prentice Ha all, Inc., 1937,

Lientz, B. P. ard Swansop, E.
Jaragement, Addison-Fesley, 19

pPressman, Roger, S., Software En ;gggrlngz
Practitioner's Agproacg McGraw-A1iII Boo Co., 1582.

(]

kome Air Develciment Center Report RADC-TR-80- 13, A
hFeview of Soitware Hairnptenance ¢ecnnology by John DT
Donahoo and Dotothy Swearingen, rebruary f980.

van Bcrn, Earl C., "Software Must Evolve", Softwar
Engineering, H. Freeman and P. M. Lewis, editors
Xcadenic Press, EE- 209-226, 1980.

~ o

Rome Air Develcpment Center Report RADC-TR-82-313,
Advanced Tools for Software Maintenance, by Jeffery S.
D€an and Brian F. McCune, December 1982.

Fisher, David A., and Standish, Thowmas A., "Initial
Thcughts on the Pebbleman Process", Institute for
Defenlse Analysis, January 3, 1379.

"Federal Agencies' Maintenance of Computer Prograns:
Expensive and Undermanaged", General Accounting
Cfiice, AFMD-81-25, Februafy 26, 1981.

Parikh, Girish and Zveglntzov Nicholas, "The #World of

Software Maintenance® Tutorial on Software

M%;%tenance, IEEE Computer society ~PreSs, pfF. T1-3,
C -

Fjeldstad, R. K. and Bamlen, W. T., "Application
Progran Mdlntenance Studg_ Report to cur
Kespondents", ¥ IBH Corpora ion, DP Mdarketing Group,
White Plalns, N 75.

McClure, Carma L., Manag gg
ra na ein

32ftware Dev Frent aad
Maintenarce, Var Nost nhald Company, 1.

=40

Brcoks Jr., Fredrick P., Ihe gl
Essays on Software Engineering, Addl

Putnanm, lawrence H., Tutorial on Software Ccst

Estimating and Life-Cycle "Tontrol: Getting the

1gf wate NumbeIs, TEEE CTODNpUter SoCiety Press, sectidn
Y i | g -

;

- -
p -
)

.

DR N PP PN PRSP N L

- a .2 la _a "

4.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Richardson, G. 1. and Putler, C. W., "Orgamnizational
Issues of Effective Maintepnance Management”, ArIpPS
Conference Proceedings, National Comguter Ccnfer€nts,
¥3¥316=19, T3983, ATIPS Fress, vol. 52, pp. 155-1¢1,

Lehpan, M. M., "laws and Conservation in Large Progran
Evclution" in Proceedings, Second Lifecycle
Management Workshop, AtlIanta,” Georgia, pp. 180=735,
Rugust~27-22,71573.

Boehm, Barry W., "Econorics of Software Yaintenarce",
P;ggeedlgg% of the Software Maintenance Workskor, .at
Naval™ PosS gfaduafe“SEﬁo6I, donteTey CaIiidrnia,
?gggmher 6-8B, 183, IEEE Computer Soc1e(y Press, E. 5,

Air Command and Staff College Report 83-1325,
Software Maintenance Cost Estimating, by G. H. Klemas,
March 19383%

Jones, Carl R. and Ein-Dor, Phillip, Information

Resources Yanagement, Elsiever Science, forthccmirg.

Develcrment Center Report RADC-TR-81-144, An
n of _gftwarg1ggg§g Estimating Models, by

Hohant{, Siba N. "Software Cost Estimation: Present
and Future", Sc;{ware - Practice and Experience, vol,
11, pp. 103-127,7T198T.

Hoppenstand, G. S. and Nowak, L. J., Manageazent of
Naval Security Groa Programmer ResQuLces,. raval
?Sg%rlty Group Activity, Kaggs IsTIand, tilifornia,
Merring_ III, +%illiam H., A Model for =Zstimating
Tactical Software Maintenahce Reguirements, Haster's
Thés1s, ~— Naval ostgraduate School, Monterey,
California, 1982.

Glass, Robert I. and Noiseux, Ronald A., Software
Maintenance ggideﬁook, Prentice-Hall, Inc., 1987,
Halstead Maurice _i., EZlements of Software Science,
Elsevier North Holland, T1977.

Martin, James and McClure, Carma, Software
Yaintenance: The _problem and 1Its Solutions,
Frentice-Hall, Inc., 1%33%

Jones, T. C., "Measurin Programming %uality and
Prcductivityw, IBM Systems Journal, 7,
Ep. 39-63, 19987

vol. no. 1,

<
9
4?
4
K
R

g

dedaddailib

Sl tinaenteieiiatliteciioniaiintind B e

PRI W W Y

il e

27.

28.

29.

30.

31.

32.

33.

34.

36.

37.

38.

39.

Jones, Caspar, "Estimating Productivity, Quality, ani
Sctedules Ior Frogramming Systems", Proceedinis c¢f the
Software Mainteralice WOrXshop, a%QNavaI’yosygraﬁuﬁfe
SChool, ¥onterey, California, December 6-8, 1983, TEEE
Computer Society Press, pp. 33- . 83.

Ccmputer Software Management Subgroupg, nggegg;géé of
the Joint Commanders, "Joint Policy Coordimating Groud
on Computer Resource ~Hanagement, Second” Sofiwate
Workshop, Novebfer T, 1927T. -

Brewn, ?. J., "Why Does Software Die", Infotech State
of the Art Repcrt, series 8, no. 7, pp. 32-85, T19ET.
wclverton, F. We, ®Software Life Cycle

Management-Dynamics Practice", in Proceedings: Second

n
Software ;;éecxglg Management Workshon, AcIantay,
Georgia, pp. =25, August~27=22, 7578,

"Report of the Department of Defense Joint Service
Task Force on Software Problems (U)" AD-2123 449,
Degartment of Trefense, Washington, b.c., July 30,

u2.

lycns, Michael J., "salvaging Your Software Asset
éTools . Based Ualntenance?“, AFIPS Conference
rccggdlngs, National Computer _Con¥eTence,” Hay G-7,
1987, XFIPS Press, vol. 50, pp. 337-341, 81.

Booch, Grady, Softw

s, Ada, The
Benjamin/Cumidlngs” Publ

Schneiderman, Een, Sof
in _ Computer an o
Puklishers, Inc., 19807

0. S. Air Force (COMTEC-2000), Computer Technology
Forecast and Weapon System Impact Stui? vol. II%,
December 1578.

Lientz, Bennet P., "Issues in Software Maintenance",
University of California, Los Angeles, work partially
supgorted by Office of Naval Research, project nunter
NR 049-345,"July 1983.

heinberqg, Gerald M., The P§{cgo;ggx of
Prcgramming, Van Nostrand Reinhold Compa
Schneider, Ge. R. Eugenia, Str
Maintenance, = Master's " Thesis, Calit
UD1versity, Chico, 1981.

Brcnstein, Gary M. and Okamoto, Robert I., "I'm CK,
You'ﬁe ?K, Maintenance is OK", Computerworld, January
' .

112

PUPEPAND | RO Sre . [ORNLI GGy Erwe . Y G

bt AW

A S amamc maus o " T Ty - CIRn. Satnci S ity L wowY Ty Rt At SSRGS e edias ot el i . - e S e P

cditor, "That Maintenance

40. C ‘
! er, gannlng Publications, Iuc.,

~J
[]
.

41. Alford, 4. %., "A Requireadents EZngjineeriny 4ethodcl
for Peal-'lme Pro;essxng Re;u;ce:eat‘"
nggsautlons on Software ZELjineering, ST -;(1) CRo2

L0097
= ’

2d
Ko

Ross, D., and Schoman, K., "Structured Analysis for
gegglrements Deflnltlon" IZZE Tcansactions on
o

377,

ware Engineering, vol. 3, no. 1, pp. £-75, January

43. ony I., "Information System Cesign",

Aatho
£ ;gg merlcan Society for Infcrme ion
anuary

44, Federal Software Testing Center, General Services
Administration, Report 0SD-82-101, Software docls
Preject: A Means of Capturing Technology and IBproving
Fnginearing, Fe€kruary, 19827

45. Notes on Ada Programmicg gport Environments,
Softech, p. 41&,4, August 11, 198

-

h6. Welf, H., and others, "The Ada Language Systern", 1
Ccmputer, p. 38, June 1981.

u7. Department of Defense, Requirements fer Ada
Programmlng Surrort Environments: Storneman, Pe 1,
Ferruary 1980

9.

us. Thomas, "Design by Objectives: Maintainability",

al on Software Maintenance, IZEE Com,aieL
¥ Préss, Tp. 167-173,7771533.°

i
A

|

49. Department of the Navy, Deputy Chiet of Naval
Operations (Mangower Personnel and” Traininy CPNAY
g cO;czqgj, MAERIS Higa Order ZlLanguage (H2L) §£ggg_

arc .

£0. Rothnie Jr., J. B. and others, "Introduction to a
- System for Listributed Databases {SoD-1) ", ACHM
‘r%%sactlons QD Database Systems, vol. 5, no. 1, MaTch

A9

General Services

deral Conversion Sufpport Center
Software

Fe

Administration Repor OSD/‘CSC 83-006
Inprovement Locess == It E£é§§§ an
Afrendices, part 2 of 27 July 1983.

113

M S G At gl Sa o gune a0t
I KR

BIBLICGRAPHY

Cash Jr., James I.,McFarlan, F. Warren and ncxennez, Jares
L. Ccrporate ;gfg;ggg;og Sistens Management: Text ard
Cases, kichard D. ITtwit, Inc., 37

DeMarco10 2Thomas, Ccntrolling Software Projects, Yerdca

Press,

Freerman, Peter and Wasserman, Anthong I., eds., T
%ogggare Design Techriques, IEEE omputer Soci@é

Parikh, Girish and Zvegintzov, Nicholas, eds., Tutc
Software Maintenence, IEEE Computer Socliety Press,

Pierce Jr. Charles and_ Wagner, Rebecca Louise,
_____ : £ .Projects: Estipation of Cost _and
Hanager*s°801g§§- ’ MasSter¥s Thesis, ~Naval~ Po

r'a *

eghen L. and Hodgson, Ra . Proggct'
aintenance Manning Levg_§, fastes

t
€
duate School, 1987 = !

114

——— Balih e ST A D S dir b 20 I Al U 200 e adt SN A A el Rhlind JhA s ek B ROR A dh ana

INITIAL DISTRIBUTION LIST

No.

Lefernse Technical Information Center
Cameron Station |
Alexandria, Virginia 22314

Litrarg, Code 0142
Naval tostgraduate School
Monterey, Califcrnia 93943

Cdr Dean Guyer, SC, USN, Code 54Gu
Administrative Sciences Department
Naval Postgraduate School
Mcnterey, Califcrnia 93943

1T Brenda J. Sullivan, 0OSN

Naval Military Fersonnel Ccmmand
ATTN: (NMPC-4

Navz.De artmen

Washington, D.C. 20370

1T Brian Henderscn, USN _
Naval Security Group Activit
Fort GCeorge G. Meade, MD 20755

Frofessor Carl k. Jones, Code S4Js
Administrative Sciences Department
Naval Postgraduate School
Mcnterey, Caiifcrmnia 93943

Curricular Office - Code 37
Cormputer Technolcgy

Naval Postgraduaté’ School
Monterey, Califcrnia 93943

115

Ccpies
2

T v s v
P

A A e

o

FILMED

5—-85

DTIC

- N - L . . N . - . .
NPT S, W I R I O O e PR

